如圖,在平面直角坐標系中,半徑為l的⊙B經(jīng)過坐標原點0,且與x軸、y軸分別交于A,C兩點,過O作⊙B的切線與AC的延長線交于點D.已知點A的坐標為(,0).
(1)求sin∠CAO的值;
(2)若反比例函數(shù)的圖象經(jīng)過點D,求該反比例函數(shù)的解析式.

【答案】分析:(1)由A的坐標及A的位置,得到OA的長,再由AC為圓的直徑,根據(jù)半徑的長得出AC的長,在直角三角形OAC中,根據(jù)勾股定理求出OC的長,進而根據(jù)∠CAO的對邊OC及斜邊AC的長,利用銳角三角形函數(shù)定義即可求出sin∠CAO的值;
(2)連接OB,由OD為圓B的切線,根據(jù)切線的性質得到OB與OD垂直,即∠BOD為直角,又OA=OB,根據(jù)等邊對等角可得一對角相等,再由∠CBO為三角形AOB的外角,根據(jù)外角性質可得出∠CBO的度數(shù),進而在直角三角形BOD中求出∠ODB的度數(shù),可得出∠ODB=∠OAD,根據(jù)等角對等邊可得OA=OD,由OA的長得出OD的長,然后過D作DE垂直于x軸,由∠DOE為三角形AOD的外角,得出∠DOE的度數(shù),根據(jù)斜邊OD的長,利用正弦及余弦函數(shù)定義求出DE與OE的長,進而確定出點D的坐標,設過D的反比例函數(shù)解析式為y=,把D坐標代入確定出k的值,即可確定出反比例的解析式.
解答:解:(1)由A(,0)得,OA=,
在Rt△AOC中,由AC=2,OA=
根據(jù)勾股定理得:OC=,
則在Rt△AOC中,sin∠CAO==;
(2)連接0B,過D作DE⊥x軸于點E,

∵OD切⊙B于0,∴0B⊥OD,
∵在Rt△AOC中,sin∠CAO=,
∵BA=OB,
∴∠CAO=∠BOA=30°,
∴∠DBO=∠CAO+∠BOA=2∠BOA=60°,又∠BOD=90°,
∴∠ODB=30°,即∠ODA=∠OAD,
∴OD=OA=,
∵∠DOE=60°,DO=,
∴OE=0D=,DE=OD,
∴點D坐標為(),
設反比例函數(shù)解析式為,由其圖象過點D,
=,即k=-,
則該反比例函數(shù)解析式為,即
點評:此題考查了切線的性質,三角形外角的性質,勾股定理,銳角三角函數(shù)定義,以及利用待定系數(shù)法求反比例函數(shù)的解析式,已知切線,常常連接圓心與切點,由切線性質得垂直,利用直角三角形的性質來解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案