如圖-1,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo);
(2)如圖-2,若AE上有一動(dòng)點(diǎn)P(不與A,E重合)自A點(diǎn)沿AE方向向E點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(),過(guò)P點(diǎn)作ED的平行線交AD于點(diǎn)M,過(guò)點(diǎn)M作AE的平行線交DE于點(diǎn)N.求四邊形PMNE的面積S與時(shí)間t之間的函數(shù)關(guān)系式;當(dāng)t取何值時(shí),S有最大值?最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時(shí),以A,M,E為頂點(diǎn)的三角形為等腰三角形,并求出相應(yīng)的時(shí)刻點(diǎn)M的坐標(biāo).
解:(1)依題意可知,折痕是四邊形的對(duì)稱軸,
∴在中,,


∴點(diǎn)E坐標(biāo)為(2,4).
中,, 又
 . 解得:
點(diǎn)坐標(biāo)為
(2)如圖①
,又知,
.又
而顯然四邊形為矩形.



∴當(dāng)時(shí),有最大值
(3)(i)若以為等腰三角形的底,則(如圖①)
中,,
,
∴P為的中點(diǎn),

,
∴M為的中點(diǎn).過(guò)點(diǎn)M作,垂足為F,則的中位線,
,
∴當(dāng)時(shí),,為等腰三角形.
此時(shí)點(diǎn)M坐標(biāo)為
(ii)若以AE為等腰三角形的腰,則(如圖②)
中,
過(guò)點(diǎn)M作,垂足為F.
,


,

,
,
∴當(dāng)時(shí),(),此時(shí)點(diǎn)M坐標(biāo)為
綜合(i)(ii)可知,時(shí),以為頂點(diǎn)的三角形為等腰三角形,
相應(yīng)點(diǎn)M的坐標(biāo)為

 

 

 

 

 

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形OABC是菱形,點(diǎn)C在x軸上,AB交y軸于點(diǎn)H,AC交y軸于點(diǎn)M.已知點(diǎn)A(-3,4).
(1)求AO的長(zhǎng);
(2)求直線AC的解析式和點(diǎn)M的坐標(biāo);
(3)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿折線A-B-C運(yùn)動(dòng),到達(dá)點(diǎn)C終止.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,△PMB的面積為S.
①求S與t的函數(shù)關(guān)系式;
②求S的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形OABC是邊長(zhǎng)為1的正方形,反比例函數(shù)y=
kx
的圖象過(guò)點(diǎn)B,則k的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(4,0),C(0,1),點(diǎn)D是
OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動(dòng).當(dāng)△ODP是腰長(zhǎng)為2的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形OABC是面積為4的正方形,函數(shù)y=
k
x
(x>0)的圖象經(jīng)過(guò)點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB,BC翻折,得到正方形MABC′,NA′BC.設(shè)MC′、NA′分別與函數(shù)y=
k
x
(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式;
(3)求△OEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•菏澤)(1)如圖1,∠DAB=∠CAE,請(qǐng)補(bǔ)充一個(gè)條件:
∠D=∠B或∠AED=∠C.
∠D=∠B或∠AED=∠C.
,使△ABC∽△ADE.
(2)如圖2,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案