【題目】已知,是過(guò)點(diǎn)的一條射線(xiàn),,分別平分,.請(qǐng)回答下列問(wèn)題:
(1)如圖①,如果是的平分線(xiàn),求的度數(shù)是多少?
(2)如圖②,如果是內(nèi)部的任意一條射線(xiàn),的度數(shù)有變化嗎?為什么?
(3)如圖③,如果是外部的任意一條射線(xiàn),的度數(shù)能求出嗎?如果能求出,請(qǐng)寫(xiě)出過(guò)程;如果不能求出,請(qǐng)簡(jiǎn)要說(shuō)明理由.
【答案】(1)的度數(shù)是40°.
(2)的度數(shù)沒(méi)有變化,證明過(guò)程見(jiàn)詳解.
(3)可以求出的度數(shù),的度數(shù)是40°,證明過(guò)程見(jiàn)詳解.
【解析】
(1)根據(jù),代入求出的度數(shù).
(2)根據(jù),代入求出的度數(shù).
(3)根據(jù),代入求出的度數(shù).
(1)∵OD、OE分別平分∠BOC和∠AOC
∴ ,
∴
∵
OC平分∠AOB
∴
∴
(2)∵OD、OE分別平分∠BOC和∠AOC
∴ ,
∴
∵
∴
∴
(3)∵OD、OE分別平分∠BOC和∠AOC
∴ ,
∴
∵
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以Rt的斜邊AB為一邊在同側(cè)作正方形ABEF.點(diǎn)O為AE與BF的交點(diǎn),連接CO,若CA = 2,,那么四邊形ABOC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣.某校為滿(mǎn)足學(xué)生的閱讀需求,欲購(gòu)進(jìn)一批學(xué)生喜歡的圖書(shū),學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,被調(diào)查學(xué)生須從“文史類(lèi)、社科類(lèi)、小說(shuō)類(lèi)、生活類(lèi)”中選擇自己喜歡的一類(lèi),根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)圖2中“小說(shuō)類(lèi)”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2500人,估計(jì)該校喜歡“社科類(lèi)”書(shū)籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,還需添加的條件是_________.(只需填一個(gè))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】火車(chē)勻速通過(guò)隧道時(shí),火車(chē)在隧道內(nèi)的長(zhǎng)度(米)與火車(chē)行駛時(shí)間(秒)之間的關(guān)系用圖象描述如圖所示,有下列結(jié)論:
①火車(chē)的長(zhǎng)度為120米;
②火車(chē)的速度為30米/秒;
③火車(chē)整體都在隧道內(nèi)的時(shí)間為25秒;
④隧道長(zhǎng)度為750米.
其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分12分)快、慢兩車(chē)分別從相距480千米路程的甲、乙兩地同時(shí)出發(fā),勻速行駛,先相向而行,途中慢車(chē)因故停留1小時(shí),然后以原速繼續(xù)向甲地行駛,到達(dá)甲地后停止行駛;快車(chē)到達(dá)乙地后,立即按原路原速返回甲地(快車(chē)掉頭的時(shí)間忽略不計(jì)),快、慢兩車(chē)距乙地的路程(千米)與所用時(shí)間(小時(shí))之間的函數(shù)圖象如圖,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:
(1)求慢車(chē)的行駛速度和的值;
(2)求快車(chē)與慢車(chē)第一次相遇時(shí),距離甲地的路程是多少千米?
(3)求兩車(chē)出發(fā)后幾小時(shí)相距的路程為千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50°,OD是OB的反向延長(zhǎng)線(xiàn).
(1)若∠AOC=∠AOB,求OC的方向.
(2)在(1)問(wèn)的條件下,作∠AOD的角平分線(xiàn)OE,求∠COE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com