如圖a,△ABC和△CEF是兩個(gè)大小不等的等邊三角形(等邊三角形為三條邊相等,三個(gè)角為60°的三角形),且有一個(gè)公共頂點(diǎn)C,點(diǎn)F、B、C在同一直線上,連結(jié)AF和BE。

 

(1)線段AF和BE有怎樣的大小關(guān)系?(寫出結(jié)論,不需要說明理由)

 (2)將圖a中的△CEF繞點(diǎn)C旋轉(zhuǎn)一定的角度,得到圖b,(1)中的結(jié)論還成立嗎?作出判斷并說明理由;

 

(1)AF=BE,(2)結(jié)論仍然成立

解析:(1)AF=BE  (2分)

      (2)結(jié)論仍然成立 

      說理如下:∵∠BCA=∠ECF=60°

∴∠ACF=∠BCE  (1分)

在△ACF和△BCE中

  (2分)

     ∴△ACF≌△BCE(SAS)   (1分)

  ∴AF=BE(全等三角形對(duì)應(yīng)邊相等)  (1分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,在△ABC和△DEF中,已知AB=DE,AC=DF,要使△ABC≌△DEF,根據(jù)三角形全等的判定公理還需添加條件(填上你認(rèn)為正確的一種情況)
∠A=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在△ABC和△ADE中,已知∠1=∠2,∠B=∠E,AC=AD.請(qǐng)說明△ABC≌△AED的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•上海)如圖,在△ABC和△DEF中,點(diǎn)B、F、C、E在同一直線上,BF=CE,AC∥DF,請(qǐng)?zhí)砑右粋(gè)條件,使△ABC≌△DEF,這個(gè)添加的條件可以是
AC=DF
AC=DF
.(只需寫一個(gè),不添加輔助線)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△ADE中,∠DAB=∠EAC,∠C=∠E.
(1)△ABC與△ADE相似嗎?為什么?
(2)如果5AD=3AB,BC=10cm,求DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△EFD中,AB=EF,AC=ED,點(diǎn)B,D,C,F(xiàn)在一條直線上.
(1)請(qǐng)你添加一個(gè)條件,由“SSS”可判定△ABC≌△EFD.
(2)在(1)的基礎(chǔ)上,求證:AB∥EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案