(本小題滿分10分)如圖,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在x軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F.
(1)若△OAE、△OCF的而積分別為.且,求k的值.
(2)若OA=2,0C=4,問當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形OAEF的面積最大,其最大值為多少?
見解析
解析:(1)∵點(diǎn)E、F在函數(shù)y=(x>0)的圖象上,
∴設(shè)E(x1,),F(xiàn)(x2,),x1>0,x2>0,
∴S1=,S2=,
∵S1+S2=2,∴ =2,∴k=2;
(2)∵四邊形OABC為矩形,OA=2,OC=4,
設(shè)E(,2),F(xiàn)(4,),
∴BE=4-,BF=2-,
∴S△BEF=12(4-)(2-)=-k+4,
∵S△OCF=12×4×=,S矩形OABC=2×4=8,
∴S四邊形OAEF=S矩形OABC-S△BEF-S△OCF=8-(-k+4)-=-116k2++4
=-+5,
∴當(dāng)k=4時(shí),S四邊形OAEF=5.
即當(dāng)點(diǎn)E運(yùn)動(dòng)到AB的中點(diǎn)時(shí),四邊形OAEF的面積最大,最大值是5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年河北省中考模擬試卷數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)
如圖,在平面直角坐標(biāo)系中,直線L:y=-2x-8分別與x軸、y軸相交于A、B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P。
(1)連結(jié)PA,若PA=PB,試判斷⊙P與X軸的位置關(guān)系,并說明理由;
(2)當(dāng)K為何值時(shí),以⊙P與直線L的兩個(gè)交點(diǎn)和圓心P為頂點(diǎn)的三角形是正三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年四川省鹽源縣民族中學(xué)中考模擬試題數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.動(dòng)點(diǎn)P從D點(diǎn)出發(fā)沿DC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)沿CB以每秒2個(gè)單位的速度向B點(diǎn)運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),Q點(diǎn)隨之停止運(yùn)動(dòng).
【小題1】(1)求梯形ABCD的面積;
【小題2】(2)當(dāng)P點(diǎn)離開D點(diǎn)幾秒后,PQ//AB;
【小題3】(3)當(dāng)P、Q、C三點(diǎn)構(gòu)成直角三角形時(shí),求點(diǎn)P從點(diǎn)D運(yùn)動(dòng)的時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C、P的坐標(biāo)分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。
【小題1】(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的表達(dá)式;
【小題2】(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1
與△OAB對(duì)應(yīng)線段的比為3:1,請(qǐng)?jiān)谟覉D網(wǎng)格中畫出放大
后的△A1B1C1;(所畫△A1B1C1與△ABC在點(diǎn)P同側(cè));
【小題3】(3)經(jīng)過A1、B1、C1三點(diǎn)的拋物線能否由(1)中的拋物線平
移得到?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆河南省商丘市九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點(diǎn)O,∠1 = ∠2 = 45°.
【小題1】(1)如圖1,若AO = OB,請(qǐng)寫出AO與BD
的數(shù)量關(guān)系和位置關(guān)系;
【小題2】(2)將圖1中的MN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到
圖2,其中AO = OB.
求證:AC = BD,AC ⊥ BD;
【小題3】(3)將圖2中的OB拉長為AO的k倍得到
圖3,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com