如圖,四邊形ABCD為矩形,四邊形AEDF為菱形.
(1)求證:△ABE≌△DCE;
(2)試探究:當(dāng)矩形ABCD邊長(zhǎng)滿足什么關(guān)系時(shí),菱形AEDF為正方形?請(qǐng)說(shuō)明理由.
(1)證明見(jiàn)解析;(2)當(dāng)BC=2AB時(shí),菱形AEDF為正方形.理由見(jiàn)解析.

試題分析:(1)根據(jù)矩形的性質(zhì)可得∠B=∠C=90°,AB=DC,根據(jù)菱形的四條邊都相等可得AE=DE,然后利用“HL”證明Rt△ABE和Rt△DCE全等即可;
(2)BC=2AB時(shí),菱形AEDF為正方形.根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=CE,然后求出AB=BE,從而求出∠BAE=∠AEB=45°,同理可得∠DEC=45°,然后求出∠AED=90°,最后根據(jù)有一個(gè)角是90°的菱形是正方形判斷.
(1)證明:∵四邊形ABCD為矩形,
∴∠B=∠C=90°,AB=DC,
∵四邊形AEDF為菱形,
∴AE=DE,
在Rt△ABE和Rt△DCE中,
,
∴Rt△ABE≌Rt△DCE(HL);
(2)解:當(dāng)BC=2AB時(shí),菱形AEDF為正方形.
理由:∵Rt△ABE≌Rt△DCE,
∴BE=CE,∠AEB=∠DEC,
又∵BC=2AB,
∴AB=BE,
∴∠BAE=∠AEB=45°,
同理可得,∠DEC=45°,
∵∠AEB+∠AED+∠DEC=180°,
∴∠AED=180°-∠AEB-∠DEC=90°,
∴菱形AEDF是正方形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)O,與BC相交于點(diǎn)N,連接BM、DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求菱形BMDN的面積和對(duì)角線MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校初四年級(jí)學(xué)習(xí)小組在探究學(xué)習(xí)過(guò)程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置,現(xiàn)將Rt△AEF繞A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點(diǎn)M,AC與EF交于點(diǎn)N,BC與EF交于點(diǎn)P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時(shí),四邊形ABPF是什么樣的特殊四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知中,F(xiàn)是BC邊的中點(diǎn),連接DF并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)E.求證:AB=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是由相同的小正方形組成的網(wǎng)格,A、B兩點(diǎn)都在小正方形的頂點(diǎn)上.現(xiàn)請(qǐng)你在圖1、圖2中各畫一個(gè)以A、B、C、D為頂點(diǎn)的菱形.要求:
(1)頂點(diǎn)C、D在小正方的頂點(diǎn)上;
(2)工具只用無(wú)刻度的直尺;
(3)所畫的兩個(gè)菱形不全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在一張矩形紙片ABCD中,AD=4cm,點(diǎn)E,F(xiàn)分別是CD和AB的中點(diǎn).現(xiàn)將這張紙片折疊,使點(diǎn)B落在EF上的點(diǎn)G處,折痕為AH.若HG的延長(zhǎng)線恰好經(jīng)過(guò)點(diǎn)D,則CD的長(zhǎng)為(  )
A.2cmB.cmC.4cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若一個(gè)多邊形的內(nèi)角和為1800°,則這個(gè)多邊形的對(duì)角線條數(shù)是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形ABCD中,E、F均為中點(diǎn),則下列結(jié)論中:①AF⊥DE; ②AD=BP; ③PE+PF=PC; ④PE+PF=PC。其中正確的是( 。

A.①④      B.①②④      C.①③      D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形A2B2C2D2;以此進(jìn)行下去…,則正方形AnBnCnDn的面積為( 。
A.(nB.5nC.5n-1D.5n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案