【題目】如圖,已知長方形ABCD中,AD=6cm,AB=4cm,點E為AD的中點.若點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BC上由點B向點C運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△AEP與△BPQ是否全等,請說明理由,并直接寫出此時線段PE和線段PQ的位置關(guān)系;
(2)若點Q的運動速度與點P的運動速度相等,運動時間為t秒,設(shè)△PEQ的面積為Scm2,請用t的代數(shù)式表示S;
(3)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△AEP與△BPQ全等?
【答案】(1)全等。理由見解析;(2)S=;(3)點Q運動的速度為=3÷2=1.5cm/秒時,△AEP≌△BQP..
【解析】
(1)本題很容易證明△AEP≌△BPQ,這樣可得出∠AEP=∠BPQ,因為∠AEP+∠APE=90°,可得出∠BPQ+∠APE=90°,這即可判斷出結(jié)論.
(2)可分別用t表示出AP、BQ、BP的長度,然后用梯形的面積減去△APE、△BPQ的面積即可得出△PEQ的面積為Scm2.
(3)設(shè)Q運動的速度為xcm/s,則根據(jù)△AEP與△BQP得出AP=BP、AE=BQ,解出即可得出答案.
(1)全等,
理由:當(dāng)t=1時,AP=1,BQ=1,∴AP=BQ.
∵E是AD的中點,∴
∵PB=AB=AP=4﹣1=3,∴AE=PB.
在Rt△EAP和Rt△PBQ中,
∴△EAP≌Rt△PBQ(SAS).
此時.
(2)如圖1所示連接QE.
圖1
當(dāng)t≤4時,AP=BQ=t,
S梯形AEQB
∴
如圖2所示:
當(dāng)4<t≤6時,點P與點B重合,
∴S與t的函數(shù)關(guān)系式為S=;
(t的取值范圍不做要求)
(3)如圖3所示:
∵△AEP≌△BQP,PA≠BQ,
∴AP=PB=2,AE=BQ=3.
∴
∴點Q運動的速度為=3÷2=1.5cm/秒時,△AEP≌△BQP..
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( )
A. 130°B. 120°C. 110°D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,階梯圖的每個臺階上都標(biāo)著一個數(shù), 從下到上的第個至第個臺階上依次標(biāo)著,且任意相鄰四個臺階上的數(shù)的和都相等.
求前個臺階上的數(shù)的和;
求第個臺階上的數(shù)x的值;
從下到上前為奇數(shù))個臺階上的數(shù)的和能否為?若能,求出的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D在AB上,點E在AC上,BE、CD相交于點O.
(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度數(shù);
(2)試猜想∠BOC與∠A+∠B+∠C之間的關(guān)系,并證明你猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的單位長度為1.
(1)如果點A,D表示的數(shù)互為相反數(shù),那么點B表示的數(shù)是多少?
(2)如果點B,D表示的數(shù)互為相反數(shù),那么圖中表示的四個點中,哪一點表示的數(shù)的絕對值最大?為什么?
(3)當(dāng)點B為原點時,若存在一點M到A的距離是點M到D的距離的2倍,則點M所表示的數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在兩條垂直相交的道路上,一輛自行車和一輛摩托車相遇后又分別向北向東駛?cè),若自行車與摩托車每秒分別行駛米、米,則秒后兩車相距( )米.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B、C分別是⊙O上的點,∠B=60°,P是直徑CD的延長線上的一點,且AP=AC.
(1)求證:AP與⊙O相切;
(2)如果PD=,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陶軍于上周購買某農(nóng)產(chǎn)品10000斤,每斤元進入批發(fā)市場后共占5個攤位.每個攤位最多容納2000斤該品種的農(nóng)產(chǎn)品,每個攤位的市場管理價位為每天20元,下表為本周內(nèi)該農(nóng)產(chǎn)品每天的批發(fā)價格比前一天的漲跌情況(購進當(dāng)日該農(nóng)產(chǎn)品的批發(fā)價格為每斤元)
星期 | 一 | 二 | 三 | 四 | 五 |
與前一天的價格漲跌情況(元) | |||||
當(dāng)天的交易量(斤) | 2500 | 2000 | 3000 | 1500 | 1000 |
(1)星期四該農(nóng)產(chǎn)品價格為每斤多少元?
(2)本周內(nèi)該農(nóng)產(chǎn)品的最高價格為每斤多少元?最低價格為每斤多少元?
(3)陶軍在銷售過程中采用逐步減少攤位個數(shù)的方法來降低成本,增加收益,這樣他在本周的買賣中共賺了多少錢?請你幫他算一算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com