【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC10,BD9,則△ADE的周長(zhǎng)為( 。

A. 19B. 20C. 27D. 30

【答案】A

【解析】

先由△ABC是等邊三角形得出AC=AB=BC根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得出AE=CD,BD=BE,由∠EBD=60°,BE=BD即可判斷出△BDE是等邊三角形,故DE=BD,即可求出結(jié)果

解:∵△ABC是等邊三角形,
∴AC=AB=BC=10,
∵△BAE是△BCD逆時(shí)針旋轉(zhuǎn)60°得出,
∴AE=CD,BD=BE,∠EBD=60°,
∴AE+AD=AD+CD=AC=10,
∵∠EBD=60°,BE=BD,
∴△BDE是等邊三角形,
∴DE=BD=9,
∴△AED的周長(zhǎng)=AE+AD+DE=AC+BD=19.
故答案為:19

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)的圖象交于點(diǎn)A4,3),與y軸的負(fù)半軸交于點(diǎn)B,連接OA,且OAOB

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)過(guò)點(diǎn)Pk,0)作平行于y軸的直線(xiàn),交一次函數(shù)y2xn于點(diǎn)M,交反比例函數(shù)的圖象于點(diǎn)N,若NMNP,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC 中,ABAC,以AB為直徑的⊙OBC相交于點(diǎn)D,與CA的延長(zhǎng)線(xiàn)相交于點(diǎn)E,過(guò)點(diǎn)DDFAC于點(diǎn)F.

1)求證:DF是⊙O的切線(xiàn);

2)若AC3AE,寫(xiě)出求tanC的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠C90°,ADDB,點(diǎn)EAB的中點(diǎn),DEBC.

1)求證:BD平分∠ABC;

2)連接EC,若∠A30°DC,求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問(wèn)題:尺規(guī)作圖:確定圖1所在圓的圓心.

已知:

求作:所在圓的圓心

曈曈的作法如下:如圖2,

1)在上任意取一點(diǎn),分別連接,;

2)分別作弦,的垂直平分線(xiàn),兩條垂直平分線(xiàn)交于點(diǎn).點(diǎn)就是所在圓的圓心.

老師說(shuō):曈曈的作法正確.

請(qǐng)你回答:曈曈的作圖依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)與拋物線(xiàn)相交于A,B兩點(diǎn),且點(diǎn)A1,-4)為拋物線(xiàn)的頂點(diǎn),點(diǎn)Bx軸上。

1)求拋物線(xiàn)的解析式;

2)在(1)中拋物線(xiàn)的第二象限圖象上是否存在一點(diǎn)P,使△POB△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)若點(diǎn)Qy軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ABBC,點(diǎn)ECD邊的中點(diǎn),連接AE并延長(zhǎng)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)F,過(guò)點(diǎn)EEMAFBC于點(diǎn)M,連接AMBD交于點(diǎn)N,現(xiàn)有下列結(jié)論:AMMF;ME2MCAM;=(sinDAE2;點(diǎn)N是四邊形ABME的外接圓的圓心,其中正確結(jié)論的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為5的正方形ABCD中,點(diǎn)EF分別是BC,DC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),且AEEF

1)如圖1,當(dāng)BE2時(shí),求FC的長(zhǎng);

2)延長(zhǎng)EF交正方形ABCD外角平分線(xiàn)CP于點(diǎn)P

依題意將圖2補(bǔ)全;

小京通過(guò)觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)E運(yùn)動(dòng)的過(guò)程中,始終有AEPE.小京把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的三種想法:

想法1:在AB上截取AGEC,連接EG,要證AEPE,需證△AGE≌△ECP

想法2:作點(diǎn)A關(guān)于BC的對(duì)稱(chēng)點(diǎn)H,連接BH,CH,EH.要證AEPE,需證△EHP為等腰三角形.

想法3:將線(xiàn)段BE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到線(xiàn)段BM,連接CM,EM,要證AEPE,需證四邊形MCPE為平行四邊形.

請(qǐng)你參考上面的想法,幫助小京證明AEPE.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)x軸負(fù)半軸相交于點(diǎn)A,與y軸正半軸相交于點(diǎn)B,直線(xiàn)l過(guò)A、B兩點(diǎn),點(diǎn)D為線(xiàn)段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)D軸于點(diǎn)C,交拋物線(xiàn)于點(diǎn)E

1)求拋物線(xiàn)的解析式;

2)若拋物線(xiàn)與x軸正半軸交于點(diǎn)F,設(shè)點(diǎn)D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請(qǐng)寫(xiě)出Sx的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個(gè)最大值;并寫(xiě)出此時(shí)點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

3)連接BE,是否存在點(diǎn)D,使得相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案