【題目】如圖,圓弧形橋拱的跨度AB=16m,拱高CD=4m,則圓弧形橋拱所在圓的半徑為(

A.6 m
B.8 m
C.10 m
D.12 m

【答案】C
【解析】解:如圖,設OA=r,則OD=r﹣4,∵AB=16m,
∴AD=8m.
在Rt△AOD中,
∵OD2+AD2=OA2 , 即(r﹣4)2+82=r2 , 解得r=10(m).
故選C.

【考點精析】本題主要考查了垂徑定理的推論的相關知識點,需要掌握推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條;推論2 :圓的兩條平行弦所夾的弧相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,將腰DC繞點D逆時針方向旋轉90°至DE,連接AE,則△ADE的面積是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2x32k+2k41是關于x的一元一次方程,則k_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣(2k+1)x+4(k﹣ )=0
(1)求證:無論k取何值,這個方程總有實數(shù)根;
(2)若等腰三角形ABC的一邊長a=4,另兩邊b、c恰好是這個方程的兩個根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小李按市場價格30元/千克收購了一批海鮮1000千克存放在冷庫里,據(jù)預測,海鮮的市場價格將每天每千克上漲1元.冷凍存放這批海鮮每天需要支出各種費用合計310元,而且這些海鮮在冷庫中最多存放160天,同時平均每天有3千克的海鮮變質.
(1)設x天后每千克該海鮮的市場價格為y元,試寫出y與x之間的函數(shù)關系式;
(2)若存放x天后,將這批海鮮一次性出售.設這批海鮮的銷售總額為P元,試寫出P與x之間的函數(shù)關系式;
(3)小李將這批海鮮存放多少天后出售可獲得最大利潤,最大利潤是多少元?(利潤W=銷售總額﹣收購成本﹣各種費用)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.

(1)填空:點A坐標為 ;拋物線的解析式為

(2)在圖1中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?

(3)在圖2中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(  )

A.a+b)(ab)=a2b2B.ab22ab4

C.x6÷x2x3D.a+b2a2+b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+2x+3x軸的兩交點間的距離是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直角三角形的斜邊長為10,兩直角邊的比為3:4,則較短直角邊的長為(  )

A. 3 B. 6 C. 8 D. 5

查看答案和解析>>

同步練習冊答案