【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別相交于A,B兩點(diǎn),且與反比例函數(shù)y=交于點(diǎn)C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點(diǎn)B為OF的中點(diǎn),四邊形OECF的面積為16,點(diǎn)D的坐標(biāo)為(4,﹣b).
(1)求一次函數(shù)表達(dá)式和反比例函數(shù)表達(dá)式;
(2)求出點(diǎn)C坐標(biāo),并根據(jù)圖象直接寫(xiě)出不等式kx+b≤的解集.
【答案】(1)y=﹣2x+4;(2)﹣2≤x<0或x≥4.
【解析】
(1)由矩形的面積求得m=﹣16,得到反比例函數(shù)的解析式,把D(4,﹣b)代入求得的解析式得到D(4,﹣4),求得b=4,把D(4,﹣4)代入y=kx+4,即可求得一次函數(shù)的解析式;
(2)由一次函數(shù)的解析式求得B的坐標(biāo)為(0,4),根據(jù)題意OF=8,C點(diǎn)的縱坐標(biāo)為8,代入反比例函數(shù)的解析式求得橫坐標(biāo),得到C的坐標(biāo),根據(jù)C、D的坐標(biāo)結(jié)合圖象即可求得不等式kx+b≤的解集.
解:(1)∵CE⊥x軸,CF⊥y軸,
∵四邊形OECF的面積為16,
∴|m|=16,
∵雙曲線位于二、四象限,
∴m=﹣16,
∴反比例函數(shù)表達(dá)式為y=,
將x=4代入y=得:y=﹣4,
∴D(4,﹣4),
∴b=4
將D(4,﹣4)代入y=kx+4,得k=﹣2
∴一次函數(shù)的表達(dá)式為y=﹣2x+4;
(2)∵y=﹣2x+4,
∴B(0,4),
∴OF=8,
將y=8代入y=﹣2x+4得x=﹣2,
∴C(﹣2,8),
∴不等式kx+b≤的解集為﹣2≤x<0或x≥4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,為一條對(duì)角線,,,,為的中點(diǎn),連接.
(1)求證:四邊形為菱形;
(2)連接,若平分,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在國(guó)家大數(shù)據(jù)戰(zhàn)略的引領(lǐng)下,我國(guó)在人工智能領(lǐng)域取得顯著成就,自主研發(fā)的人工智能“絕藝”獲得全球最前沿的人工智能賽事冠軍,這得益于所建立的大數(shù)據(jù)中心的規(guī)模和數(shù)據(jù)存儲(chǔ)量,它們決定著人工智能深度學(xué)習(xí)的質(zhì)量和速度,其中的一個(gè)大數(shù)據(jù)中心能存儲(chǔ)580億本書(shū)籍,將580億用科學(xué)記數(shù)法表示應(yīng)為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的頂點(diǎn)A在x軸的正半軸上,∠C=60°,頂點(diǎn)B,D的縱坐標(biāo)相同,已知點(diǎn)B的橫坐標(biāo)為7,若過(guò)點(diǎn)D的雙曲線y=(k>0)恰好過(guò)邊AB的中點(diǎn)E,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線與拋物線的形狀相同,開(kāi)口方向相反,且相交于點(diǎn)和點(diǎn).拋物線與軸正半軸交于點(diǎn)為拋物線上兩點(diǎn)間一動(dòng)點(diǎn),過(guò)點(diǎn)作直線軸,與交于點(diǎn).
(1)求拋物線與拋物線的解析式;
(2)四邊形的面積為,求的最大值,并寫(xiě)出此時(shí)點(diǎn)的坐標(biāo);
(3)如圖2,的對(duì)稱(chēng)軸為直線,與交于點(diǎn),在(2)的條件下,直線上是否存在一點(diǎn),使得以為頂點(diǎn)的三角形與相似?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組為了解我市氣溫變化情況,記錄了今年月份連續(xù)天的最低氣溫(單位:℃):.關(guān)于這組數(shù)據(jù),下列結(jié)論不正確的是( )
A.平均數(shù)是 B.中位數(shù)是 C.眾數(shù)是 D.方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)B(3,0),C(0,-2),直線L:交y軸于點(diǎn)E,且與拋物線交于A,D兩點(diǎn),P為拋物線上一動(dòng)點(diǎn)(不與A重合).
(1)求拋物線的解析式.
(2)當(dāng)點(diǎn)P在直線L下方時(shí),過(guò)點(diǎn)P作PM∥x軸交L于點(diǎn)M,PN∥y軸交L于點(diǎn)N,求PM+PN的最大值.
(3)設(shè)F為直線L上的點(diǎn),以E,C,P,F為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,求出點(diǎn)F的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,弦于,為上一點(diǎn),連接交于,在的延長(zhǎng)線上取一點(diǎn),使,的延長(zhǎng)線交的延長(zhǎng)線于.
(1)求證:是的切線;
(2)連接,若時(shí).
①求證:;
②若,,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com