【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于 BF長為半徑畫弧,兩弧交于一點P,連
接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為 , ∠ABC=°.(直接填寫結(jié)果)
【答案】
(1)菱形
(2)10 ;120
【解析】解:(1)在△AEB和△AEF中,
,
∴△AEB≌△AEF,
∴∠EAB=∠EAF,
∵AD∥BC,
∴∠EAF=∠AEB=∠EAB,
∴BE=AB=AF.
∵AF∥BE,
∴四邊形ABEF是平行四邊形
∵AB=AF,
∴四邊形ABEF是菱形.
所以答案是菱形.
2)∵四邊形ABEF是菱形,
∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,
∵AB=10,
∴AB=2BO,∵∠AOB=90°
∴∠BA0=30°,∠ABO=60°,
∴AO= BO=5 ,∠ABC=2∠ABO=120°.
所以答案是10 ,120.
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣ x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標;
②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(列方程(組)及不等式解應用題)
春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富學生課外小組活動,培養(yǎng)學生動手操作能力,王老師讓學生把5m長的彩繩截成2m或1m的彩繩,用來做手工編織,在不造成浪費的前提下,你有幾種不同的截法( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標為(4,0),寫出頂點A1 , B1的坐標;
(2)若△ABC和△A1B2C2關(guān)于原點O成中心對稱圖形,寫出△A1B2C2的各頂點的坐標;
(3)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A2B3C3 , 寫出△A2B3C3的各頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC= CD.
簡單應用:
(1)在圖①中,若AC= ,BC=2 ,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上, = ,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE= AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習了圖形的旋轉(zhuǎn)知識后,數(shù)學興趣小組的同學們又進一步對圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進行了探究.
(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點A逆時針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖3,當點E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為調(diào)查本校學生周末平均每天做作業(yè)所用時間的情況,隨機調(diào)查了50名同學,下圖是根據(jù)調(diào)查所得數(shù)據(jù)繪制的統(tǒng)計圖的一部分.
請根據(jù)以上信息,解答下列問題:
(1)在這次調(diào)查的數(shù)據(jù)中,做作業(yè)所用時間的眾數(shù)是 ,中位數(shù)是 ,平均數(shù)是 ;
(2)若該校共有2000名學生,根據(jù)以上調(diào)查結(jié)果估計該校全體學生每天做作業(yè)時間在3小時內(nèi)(含3小時)的同學共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知A(a,0),B (0,b)分別為兩坐標軸上的點,且a,b滿足a2﹣24a+|b﹣12|=﹣144,且3OC=OA.
(1)求A、B、C三點的坐標;
(2)若D(2,0),過點D的直線分別交AB、BC于E、F兩點,且DF=DE,設(shè)E、F兩點的橫坐標分別為xE、xP,求xE+xP的值;
(3)如圖2,若M(4,8),點P是x軸上A點右側(cè)一動點,AH⊥PM于點H,在HM上取點G,使HG=HA,連接CG,當點P在點A右側(cè)運動時,∠CGM的度數(shù)是否改變?若不變,請求其值;若改變,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com