【題目】學(xué)習(xí)利用三角函數(shù)測高后,某綜合實踐活動小組實地測量了鳳凰山與中心廣場的相對高度AB,其測量步驟如下:

1)在中心廣場測點C處安置測傾器,測得此時山頂A的仰角∠AFH=30°;

2)在測點C與山腳B之間的D處安置測傾器(CDB在同一直線上,且CD之間的距離可以直接測得),測得此時山頂上紅軍亭頂部E的仰角∠EGH=45°;

3)測得測傾器的高度CF=DG=1.5米,并測得CD之間的距離為288米;

已知紅軍亭高度為12米,請根據(jù)測量數(shù)據(jù)求出鳳凰山與中心廣場的相對高度AB.(1.732,結(jié)果保留整數(shù))

【答案】411米.

【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及多個直角三角形,應(yīng)利用其公共邊構(gòu)造邊角關(guān)系,進而可求出答案.

試題解析:設(shè)AH=x米,在RtEHG中,∵∠EGH=45°GH=EH=AE+AH=x+12,GF=CD=288米,HF=GH+GF=x+12+288=x+300,在RtAHF中,∵∠AFH=30°AH=HFtanAFH,即x=x+300,解得x=150+1).AB=AH+BH≈409.8+1.5≈411(米),鳳凰山與中心廣場的相對高度AB大約是411米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴點A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BC是直徑,∠BAD=120°,AB=AD

1)求證:四邊形ABCD是等腰梯形;

2)已知AC=6,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某烤鴨店在確定烤鴨的烤制時間時,主要依據(jù)的是下表的數(shù)據(jù):

鴨的質(zhì)量/千克

1

1.5

2

2.5

3

3.5

4

烤制時間/分

60

80

100

120

140

160

180

設(shè)鴨的質(zhì)量為x千克,烤制時間為t,估計當(dāng)x=2.9千克時,t的值為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠C=90°,D是BC邊上一點,AC=6,CD=3,∠ADC=α.

(1)試寫出α的正弦、余弦、正切這三個函數(shù)值;

(2)若∠B與∠ADC互余,求BD及AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m,AB和CD之間有一觀景池,小南在A點測得池中噴泉處E點的俯角為42°,在C點測得E點的俯角為45°(點B、E、D在同一直線上),求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東營市某中學(xué)校團委開展“關(guān)愛殘疾兒童”愛心捐書活動,全校師生踴躍捐贈各類書籍共3000本.為了了解各類書籍的分布情況,從中隨機抽取了部分書籍分四類進行統(tǒng)計:A.藝術(shù)類;B.文學(xué)類;C.科普類;D.其他,并將統(tǒng)計結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.

(1)這次統(tǒng)計共抽取_____本書籍,扇形統(tǒng)計圖中的m=______,∠α的度數(shù)是_____

(2)請將條形統(tǒng)計圖補充完整;

(3)估計全校師生共捐贈了多少本文學(xué)類書籍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣3x+m(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關(guān)于x的一元二次方程x2﹣3x+m=0的兩實數(shù)根是( 。

A. x1=1,x2=﹣1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3

查看答案和解析>>

同步練習(xí)冊答案