(2009•樂山)下列命題中,假命題是( )
A.兩點(diǎn)之間,線段最短
B.角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
C.兩組對(duì)邊分別平行的四邊形是平行四邊形
D.對(duì)角線相等的四邊形是矩形
【答案】分析:根據(jù)關(guān)于線段的公理、角平分線的性質(zhì)、平行四邊形的判定、矩形的判定即可求解.
解答:解:A是真命題;
B是真命題;
C是真命題;
D是假命題,例如等腰梯形;
故選D.
點(diǎn)評(píng):解答此題的關(guān)鍵是要熟知真命題與假命題的概念.
真命題:判斷正確的命題叫真命題;
假命題:判斷錯(cuò)誤的命題叫假命題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•樂山)如圖,在平面直角坐標(biāo)系中,開口向上的拋物線與x軸交于A、B兩點(diǎn),D為拋物線的頂點(diǎn),O為坐標(biāo)原點(diǎn).若OA、OB(OA<OB)的長(zhǎng)分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;
(2)過點(diǎn)A作AC⊥AD交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)A任作直線l交線段CD于點(diǎn)P,若點(diǎn)C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•樂山)如圖,在平面直角坐標(biāo)系中,開口向上的拋物線與x軸交于A、B兩點(diǎn),D為拋物線的頂點(diǎn),O為坐標(biāo)原點(diǎn).若OA、OB(OA<OB)的長(zhǎng)分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;
(2)過點(diǎn)A作AC⊥AD交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)A任作直線l交線段CD于點(diǎn)P,若點(diǎn)C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省寧波市南三縣初中畢業(yè)生學(xué)業(yè)診斷性考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•樂山)如圖,在平面直角坐標(biāo)系中,開口向上的拋物線與x軸交于A、B兩點(diǎn),D為拋物線的頂點(diǎn),O為坐標(biāo)原點(diǎn).若OA、OB(OA<OB)的長(zhǎng)分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;
(2)過點(diǎn)A作AC⊥AD交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)A任作直線l交線段CD于點(diǎn)P,若點(diǎn)C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省樂山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•樂山)如圖,在平面直角坐標(biāo)系中,開口向上的拋物線與x軸交于A、B兩點(diǎn),D為拋物線的頂點(diǎn),O為坐標(biāo)原點(diǎn).若OA、OB(OA<OB)的長(zhǎng)分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;
(2)過點(diǎn)A作AC⊥AD交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)A任作直線l交線段CD于點(diǎn)P,若點(diǎn)C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案