【題目】如圖,點(diǎn)D,E分別是的邊BC上兩點(diǎn),請(qǐng)你在下列三個(gè)式子,中,選兩個(gè)作為條件,余下的一個(gè)作為結(jié)論,編寫一個(gè)說(shuō)理題,并進(jìn)行解答.

如圖,已知點(diǎn)D,E分別是的邊BC上兩點(diǎn)____________,那么______嗎?為什么?

【答案】詳見解析.

【解析】

條件AB=AC,BD=EC結(jié)論AD=AE;只要證明△ABD≌△ACE即可;(答案不唯一)

如圖,已知點(diǎn)D,E分別是△ABC的邊BC上兩點(diǎn)AB=AC,BD=EC,求證AD=AE

故答案為:AB=ACBD=EC,AD=AE;

理由AB=AC(已知)

∴∠B=C等邊對(duì)等角)

在△ABD與△ACE,

∴△ABD≌△ACESAS),AD=AE(全等三角形對(duì)應(yīng)邊相等).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AC、AB的中點(diǎn),連DE、CE.則下列結(jié)論中不一定正確的是(
A.ED∥BC
B.ED⊥AC
C.∠ACE=∠BCE
D.AE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D、E為邊AB上的兩個(gè)點(diǎn),且AE=AC,BD=BC,∠BCF=70°,則∠DCE=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線,直線;直線 分別交軸于兩點(diǎn), 相交于點(diǎn).

⑴求 三點(diǎn)的坐標(biāo);

⑵求⊿的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自學(xué)下面材料后,解答問(wèn)題

分母中含有未知數(shù)的不等式叫做分式不等式,如:;那么如何求出它們的解集呢?

根據(jù)我們學(xué)過(guò)的有理數(shù)除法法則可知:兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù)其字母表達(dá)式為:

,則;若,,則

,,則;若,,則

反之:,則

,則____________

根據(jù)上述規(guī)律

求不等式的解集.

直接寫出一個(gè)解集為的最簡(jiǎn)分式不等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司研發(fā)1000件新產(chǎn)品,需要精加工后才能投放市場(chǎng).現(xiàn)在甲、乙兩個(gè)工廠加工這批產(chǎn)品,已知甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.25倍,公司需付甲工廠加工費(fèi)用每天100元,乙工廠加工費(fèi)用每天125元.

(1)甲、乙兩個(gè)工廠每天各能加工多少件新產(chǎn)品?

(2)兩個(gè)工廠同時(shí)合作完成這批產(chǎn)品,共付加工費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知有理數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示.

(1)已知a=–2.3,b=0.4,計(jì)算|a+b|–|a|–|1–b|的值;

(2)已知有理數(shù)a、b,計(jì)算|a+b|–|a|–|1–b|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解初三年級(jí)1000名學(xué)生的身體健康情況,從該年級(jí)隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5;B46.553.5;C53.560.5D60.567.5;E67.574.5),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.

解答下列問(wèn)題:

1)這次抽樣調(diào)查的樣本容量是 ,并補(bǔ)全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計(jì)圖中D組的圓心角是 度;

3)請(qǐng)你估計(jì)該校初三年級(jí)體重超過(guò)60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點(diǎn)旋轉(zhuǎn)180°得到△CEA,將△ABD繞著邊AD的中點(diǎn)旋轉(zhuǎn)180°得到△DFA,如圖②,請(qǐng)完成下列問(wèn)題:

(1)試猜想四邊形ABDF是什么特殊四邊形,并說(shuō)明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案