【題目】如圖,在等邊三角形ABC中,AB=AC=BC=10cm,DC=4cm。如果點MN都以3cm/s的速度運動,點M在線段CB上由點C向點B運動,點N在線段BA上由點B向點A運動。它們同時出發(fā),當兩點運動時間為t秒時,△BMN是一個直角三角形,則t的值為(

A.B.C.D.

【答案】D

【解析】

根據(jù)題意,用含t的代數(shù)式表示CM=3tBM=10-3t,BN=3t,分兩種情況:當∠BMN=90°時,根據(jù)等邊三角形的性質(zhì)可知∠B=60°,則∠BNM=30°,根據(jù)直角三角形中,30°角所對的直角邊是斜邊的一半可知BN=2BM,即3t=2×(10-3t),即可求得t的值;當∠BNM=90°時,同理可求t的值.

M、N都以3cm/s的速度運動

CM=3t,BM=10-3t,BN=3t,

當∠BMN=90°時,∵三角形ABC是等邊三角形,

∴∠B=60°

∴∠BNM=30°

BN=2BM,即3t=2×(10-3t

解得:

當∠BNM=90°時,∵三角形ABC是等邊三角形,

∴∠B=60°

∴∠BMN=30°

BM=2B2,即2×3t=10-3t

解得:

綜上所述,t的值為時,△BMN是一個直角三角形

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長均為1個單位的正方形網(wǎng)格圖中,建立了平面直角坐標系xOy,按要求解答下列問題:

(1)寫出△ABC三個頂點的坐標;

(2)畫出△ABC向右平移6個單位后得到的圖形△A1B1C1;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課中,小輝將邊長為3的兩個正方形放置在直線l上,如圖1,他連結(jié)AD、CF,經(jīng)測量發(fā)現(xiàn)AD=CF

1)他將正方形ODEFO點逆時針旋轉(zhuǎn)一定的角度,如圖2,試判斷ADCF還相等嗎?說明你的理由;

2)他將正方形ODEFO點逆時針旋轉(zhuǎn),使點E旋轉(zhuǎn)至直線l上,如圖3,請你求出CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,馬路的兩邊CF、DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A、B兩點分別表示車站和超市,CDAB所在直線互相平行,且都與馬路的兩邊垂直.馬路寬20米,A,B相距62米,∠A=67°,B=37°.求CDAB之間的距離.(參考數(shù)據(jù):sin67°,cos67°,tan67°,sn37°,cos37°,tan37°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的書包里只放了A4大小的試卷共4張,其中語文1張、數(shù)學(xué)2張、英語1

若隨機地從書包中抽出2張,求抽出的試卷中有英語試卷的概率.

若隨機地從書包中抽出3張,抽出的試卷中有英語試卷的概率為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場新投放共享單車640輛.

(1)1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000.請問該公司4月份在深圳市新投放共享單車多少輛?

(2)考慮到自行車市場需求不斷增加,某商城準備用不超過70000元的資金再購進AB兩種規(guī)格的自行車100輛,已知A型的進價為500/輛,售價為700/輛,B型車進價為1000/輛,售價為1300/輛。假設(shè)所進車輛全部售完,為了使利潤最大,該商城應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年全國兩會于35日至20日在北京召開,為了了解市民獲取兩會新聞的最主要途徑,記者小李開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示尚不完整的統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

(1)這次接受調(diào)查的市民總?cè)藬?shù)是   ;

(2)扇形統(tǒng)計圖中,電視所對應(yīng)的圓心角的度數(shù)是   ;

(3)請補全條形統(tǒng)計圖;

(4)若該市約有700萬人,請你估計其中將電腦上網(wǎng)和手機上網(wǎng)作為獲取新聞的最主要途徑的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,點DE、F分別在三邊上,EAC的中點,ADBE、CF交于一點G,BD2DCSGEC3,SGDC4,則ABC的面積是( 。

A.25B..30C.35D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,D為△ABC外一點,且AD=BD,DEACCA的延長線于點E,

1)求證:DE=AE+BC .

2)若,求線段AE的長.

查看答案和解析>>

同步練習(xí)冊答案