如圖,梯形ABCD中,AD?BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A開始,沿AD邊,以1厘米/秒的速度向點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C開始,沿CB邊,以3厘米/秒的速度向B點(diǎn)運(yùn)動(dòng).已知P、Q兩點(diǎn)分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).假設(shè)運(yùn)動(dòng)時(shí)間為t秒,問:
(1)t為何值時(shí),四邊形PQCD是平行四邊形?
(2)在某個(gè)時(shí)刻,四邊形PQCD可能是菱形嗎?為什么?
(3)t為何值時(shí),四邊形PQCD是直角梯形?
解:∵運(yùn)動(dòng)時(shí)間為t秒,
∴AP=t(cm),PD=AD﹣AP=24﹣t(cm),CQ=3t(cm),BQ=BC﹣CQ=26﹣3t(cm),
(1)∵AD∥BC,
∴當(dāng)QC=PD時(shí),四邊形PQCD是平行四邊形.
此時(shí)有3t=24﹣t,解得t=6.
∴當(dāng)t=6s時(shí),四邊形PQCD是平行四邊形.
(2)若四邊形PQCD是菱形,則四邊形PQCD是平行四邊形,
根據(jù)(1)得:t=6s,
∴PD=24﹣t=24﹣6=18,
過點(diǎn)D作DE⊥BC于E,
∴四邊形ABED是矩形,
∴BE=AD=24cm,
∴EC=BC﹣BE=26﹣24=2(cm),DE=AB=8cm,
∴DC==2≠PD,
∴四邊形PQCD不可能是菱形;
(3)∵AD∥BC,
∴當(dāng)PA=BQ時(shí),四邊形ABQP是平行四邊形,
∵∠B=90°,
∴四邊形ABQP是矩形,
∴∠PQC=90°,
∴當(dāng)PA=BQ時(shí),四邊形PQCD是直角梯形,
即t=26﹣3t, 解得:t=6.5,
∴t=6.5s時(shí),四邊形PQCD是直角梯形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長(zhǎng)為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點(diǎn)O,那么,圖中全等三角形共有
3
對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對(duì)角線,中位線EF交BD于O點(diǎn),若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長(zhǎng);
(2)試在邊AB上確定點(diǎn)P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對(duì)角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案