【題目】如圖,在等邊△ABC中,AC=7,點P在△ABC內部,且∠APC=90°,∠BPC=120°,則△APC的面積為___________
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學過的特殊四邊形中是勾股四邊形的一種圖形的名稱 ;
(2)如圖 1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你直接寫出所有以格點為頂點,OA、OB 為勾股邊且有對角線相等的勾股四邊形 OAMB 的頂點M 的坐標: ;
(3)如圖 2,將△ABC 繞頂點 B 按順時針方向旋轉 60°,得到△DBE,連接 AD、DC,∠DCB=30°.求證: DC2 BC2 AC2 ,即四邊形 ABCD 是勾股四邊形;
(4)若將圖 2 中△ABC 繞頂點 B 按順時針方向旋轉 a 度(0°<a <90°),得到△DBE,連接 AD、DC,則當∠DCB= °時,四邊形BECD 是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1).若以C,D,E(E在格點上)為頂點的三角形與△ABC相似,則點E的坐標不可能是( )
A. (6,0) B. (4,2) C. (6,5) D. (6,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,AB是⊙O的直徑,P為AB延長線上的一個動點,過點P作⊙O的切線,切點為C,連接AC,BC,作∠APC的平分線交AC于點D.
下列結論正確的是 (寫出所有正確結論的序號)
①△CPD∽△DPA;
②若∠A=30°,則PC=BC;
③若∠CPA=30°,則PB=OB;
④無論點P在AB延長線上的位置如何變化,∠CDP為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知: A 0,1 , B 2, 0 , C 4, 3 .
(1)求△ABC 的面積;
(2)設點 P 在坐標軸上,且△ABC 和△ABP 的面積相等,直接寫出 P 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l//AB,l與AB之間的距離為2.C、D是直線l上兩個動點(點C在D點的左側),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說法:①四邊形ABDC的面積始終為10;②當A′與D重合時,四邊形ABDC是菱形;③當A′與D不重合時,連接A′、D,則∠CA′D+∠BC A′=180°;④若以A′、C、B、D為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( )
A. ①②③④B. ①③④C. ①②④D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某個體經營戶了解到有一種盒裝商品能暢銷市場,就用4萬元購進這種商品,面市后果然供不應求,他又用8.8萬元購進了第二批這種商品,所購數(shù)量是第一批購進量的2倍,但每盒單價漲了4元,他在銷售這種盒裝商品時每盒定價都是56元,最后剩下的150盒按八折銷售,很快售完,在這兩筆生意中,這位個體經營戶共贏利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB=AC,過點A作AD⊥AB交⊙O于點D,交BC于點E,點F在DA的延長線上,且∠ABF=∠C .
(1)求證:BF是⊙O的切線;
(2)若AD=4,cos∠ABF=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-2,1),B(-1,4),C(-3,2).
(1)畫出△ABC關于點B成中心對稱的圖形△A1BC1;
(2)以原點O為位似中心,相似比為1∶2,在y軸的左側,畫出△ABC放大后的圖形△A2B2C2,并直接寫出點C2的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com