如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動點(diǎn),當(dāng)△KCM的周長最小時(shí),點(diǎn)K的坐標(biāo)為     

(3)連接AC,有兩動點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運(yùn)動,點(diǎn)Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運(yùn)動,當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動,設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.

①請問P、Q兩點(diǎn)在運(yùn)動過程中,是否存在PQ∥OC?若存在,

請求出此時(shí)t的值;若不存在,請說明理由;

②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;

③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

解:(1)設(shè)二次函數(shù)的解析式為y=a(x+2)(x﹣6)

∵圖象過點(diǎn)(0,﹣8)

∴a=

∴二次函數(shù)的解析式為y=x2x﹣8;--------------------(2分)

(2)∵y=x2x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2

∴點(diǎn)M的坐標(biāo)為(2,﹣

∵點(diǎn)C的坐標(biāo)為(0,﹣8),

∴點(diǎn)C關(guān)于x軸對稱的點(diǎn)C′的坐標(biāo)為(0,8)

∴直線C′M的解析式為:y=﹣x+8

令y=0

得﹣x+8=0

解得:x=

∴點(diǎn)K的坐標(biāo)為(,0);-------------------(2分)

(3)①不存在PQ∥OC,

若PQ∥OC,則點(diǎn)P,Q分別在線段OA,CA上,

此時(shí),1<t<2

∵PQ∥OC,

∴△APQ∽△AOC

∵AP=6﹣3t

AQ=18﹣8t,

∴t=

∵t=>2不滿足1<t<2;

∴不存在PQ∥OC;-----------------------(3分)

③當(dāng)0≤t≤1時(shí),S=12t2,函數(shù)的最大值是12;

當(dāng)1<t≤2時(shí),S=﹣+,函數(shù)的最大值是;

當(dāng)2<t<,S=QP•OF=﹣+,函數(shù)的最大值為;-------------(3分)

∴S0的值為-----------------(2分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(3,3)、B(4,0)和原點(diǎn)O.P為二次函數(shù)圖象上精英家教網(wǎng)的一個動點(diǎn),過點(diǎn)P作x軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.
(1)求出二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P在直線OA的上方時(shí),求線段PC的最大值;
(3)當(dāng)m>0時(shí),探索是否存在點(diǎn)P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(6,0)、B(-2,0)和點(diǎn)C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動點(diǎn),當(dāng)△KCM的周長最小時(shí),點(diǎn)K的坐標(biāo)為
6
7
,0)
6
7
,0)
;
(3)連接AC,有兩動點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運(yùn)動,點(diǎn)Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運(yùn)動,當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動,設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.
①請問P、Q兩點(diǎn)在運(yùn)動過程中,是否存在PQ∥OC?若存在,請求出此時(shí)t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點(diǎn)A(0,-3),B(
3
,
3
),對稱軸為直線x=-
1
2
,點(diǎn)P是拋物線上的一動點(diǎn),過點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點(diǎn)的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點(diǎn)P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點(diǎn),與y軸交于點(diǎn)D(0,4).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的頂點(diǎn)C的坐標(biāo);
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象(0≤x≤3.4),關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案