【題目】如圖,在中,.
(1)作的平分線交邊于點,再以點為圓心,長為半徑作;(要求:不寫作法,保留作圖痕跡)
(2)判斷(1)中與的位置關(guān)系并說明理由.
(3)若,求出(1)中的半徑.
【答案】(1)答案見解析;(2)相切,理由見解析;(3)
【解析】
(1)根據(jù)題意,尺規(guī)作角平分線,進而作圓,即可;
(2)過O點作OD⊥AC于D點,根據(jù)角平分線的性質(zhì)定理,得OB=OD,進而即可得到結(jié)論;
(3)根據(jù)切線長定理得CD=CB=8,設(shè)OD=OB=x,根據(jù)勾股定理,列出方程,即可求解.
(1)如圖所示;
(2)相切,理由如下:
過O點作OD⊥AC于D點,
∵CO平分∠ACB,∠ABC=90°,OD⊥AC,
∴OB=OD,即d=r,
∴⊙O與AC相切;
(3)∵Rt△ABC中,,
∴AC=10,
∵,即:AB⊥BC,
∵CB為⊙O的切線,
∴CD=CB=8,
∴AD=2,
設(shè)OD=OB=x,
由勾股定理得:22+x2=(6-x)2,解得:x=,
即:的半徑為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥x軸于點A,點B在y軸的正半軸上,∠ABC=60°,AB=4,BC=,點D為AC與反比例函數(shù)的圖象的交點.若直線BD將△ABC的面積分成1:2的兩部分,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實施“農(nóng)村留守兒童關(guān)愛計劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:
(1)求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補充完整;
(2)某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】種植草莓大戶張華現(xiàn)有22噸草莓等待出售,有兩種銷售渠道,一是運往省城直接批發(fā)給零售商,二是在本地市場零售,受客觀因素影響,張華每天只能采用一種銷售渠道,而且草莓必須在10天內(nèi)售出(含10天)經(jīng)過調(diào)查分析,這兩種銷售渠道每天銷量及每噸所獲純利潤見右表:
(1)若一部分草莓運往省城批發(fā)給零售商,其余在本地市場零售,請寫出銷售22噸草莓所獲純利潤y(元)與運往省城直接批發(fā)零售商的草莓量x(噸)之間的函數(shù)關(guān)系式;
(2)怎樣安排這22噸草莓的銷售渠道,才使張華所獲純利潤最大?并求出最大純利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:
問題情境:已知是正方形的對角線,將直角三角尺放在正方形上.
(1)如圖1,使三角尺的直角頂點與點重合,三角尺的一條直角邊交直線于點,另一條直角邊交直線于點.求證:.
操作發(fā)現(xiàn):
(2)如圖2,將三角尺的直角項點放在上,三角尺的一條直角邊交直線于點,另一條直角邊交直線于點.判斷和的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果公司以22元/千克的成本價購進1000kg蘋果,公司想知道蘋果的損壞率,隨機抽取若干進行統(tǒng)計,部分結(jié)果如下表:
草果總質(zhì)量n(kg) | 100 | 200 | 300 | 400 | 500 | 1000 |
損壞蘋果質(zhì)量m(kg) | 10.60 | 19.42 | 30.63 | 39.24 | 49.54 | 101.10 |
蘋果損壞的頻率 (結(jié)果保留小數(shù)點后三位) | 0.106 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
根據(jù)此表估計這批蘋果損壞的概率(精確到0.1),從而計算該公司希望這批蘋果能獲得利潤23000元,則銷售時(去掉損壞的蘋果)售價應(yīng)至少定為_____元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D. 點E在BC上,EF⊥AB,垂足為F,∠1=∠2.
(1)試說明DG∥BC的理由;
(2)如果∠B=54°,且∠ACD=35°,求的∠3度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com