如圖,已知△ABC中,AB=6,AC=8,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于


  1. A.
    28
  2. B.
    36
  3. C.
    45
  4. D.
    52
A
分析:在RT△ABD及ADC中可分別表示出BD2及CD2,在RT△BDM及CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.
解答:在RT△ABD和RT△ADC中,
BD2=AB2-AD2,CD2=AC2-AD2
在RT△BDM和RT△CDM中,
BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,
∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2
=AC2-AB2
=28.
故選A.
點評:本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運用勾股定理求出MC2和MB2是本題的難點,重點還是在于勾股定理的熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結(jié)論不正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案