已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

【答案】分析:①連接OE,由OD與AB平行得到一對同位角相等,一對內錯角相等,再由半徑相等,利用等邊對等角得到一對角相等,等量代換得到一對角相等,利用SAS得出三角形OCD與三角形OED全等,由全等三角形對應角相等及垂直的定義得到ED垂直于OE,即ED為圓O的切線;
②由第一問的全等得到CD=ED,再由BC為圓的切線,BA為圓的割線,利用切割線定理列出關系式,根據(jù)O為AC中點,OD平行于AB,得到D為BC中點,即OD為三角形ABC的中位線,利用三角形中位線定理得到AB=2OD,BC=2CD=2DE,代換即可得證.
解答:證明:①連接OE,
∵OD∥AB,
∴∠COD=∠A,∠DOE=∠OEA,
∵OA=OE,
∴∠A=∠OEA,
∴∠COD=∠DOE,
在△COD和△EOD中,
,
∴△COD≌△EOD(SAS),
∴∠OCD=∠OED=90°,
∴DE⊥OE,
則DE為圓O的切線;
②由△COD≌△EOD,得到CD=ED,
∵BC為圓O的切線,BA為圓O的割線,
∴BC2=BE•BA,
∵O為AC的中點,OD∥AB,
∴D為BC的中點,即OD為△ABC的中位線,
∴BA=2OD,BC=2CD=2DE,
則4DE2=BE•2OD,即2DE2=BE•OD.
點評:此題考查了切線的判定,切割線定理,全等三角形的判定與性質,中位線定理,熟練掌握切線的判定方法是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結DE.
(1)求證:DE與⊙O相切;
(2)連結OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代數(shù)式表示AE;
(3)求y與x之間的函數(shù)關系式,并求出x的取值范圍;
(4)設四邊形DECF的面積為S,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

查看答案和解析>>

同步練習冊答案