【題目】如圖,中,D,EF分別為AB,BC,CA上的點(diǎn),且,

(1)求證:;

(2),求的度數(shù).

【答案】(1)證明見解析;(2)55°.

【解析】

1根據(jù)三角形外角的性質(zhì)可得到∠CEF=BDE,可證△BDE≌△CEF;

2)由(1)可得DE=FE即△DEF是等腰三角形,由等腰三角形的性質(zhì)可求出∠B=70°,即∠DEF=B=70°,從而求出∠EDF的度數(shù)

1∵∠DEC=B+∠BDE=CEF+∠DEF,DEF=B,∴∠CEF=BDE

AB=AC∴∠C=B

又∵CE=BD,∴△BDE≌△CEF

2∵△BDE≌△CEF,DE=FE

DEF是等腰三角形,∴∠EDF=EFD

AB=ACA=40°,∴∠B=70°.

DEF=B,∴∠DEF=70°,∴∠EDF=EFD=×180°﹣70°)=55°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從分別標(biāo)有數(shù)﹣3,﹣2,﹣1,0,1,2,3的七張沒有明顯差別的卡片中,隨機(jī)抽取一張,所抽卡片上的數(shù)的絕對(duì)值不小于2的概率是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點(diǎn)D,BD的延長(zhǎng)線交AC于點(diǎn)E.

(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費(fèi)90元;后又購買了1千克桂味和2千克糯米糍,共花費(fèi)55元.(每次兩種荔枝的售價(jià)都不變)
(1)求桂味和糯米糍的售價(jià)分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)一種購買方案,使所需總費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,DAB上的點(diǎn),過點(diǎn)DBC于點(diǎn)F,交AC的延長(zhǎng)線于點(diǎn)E,連接CD,則下列結(jié)論正確的有( )

DCB=B;②CD=AB;③ADC是等邊三角形;④若E=30°,則DE=EF+CF

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)F,G分別在ADE的AD,DE邊上,C,B依次為GF延長(zhǎng)線上兩點(diǎn),AB=AD,BAF=CAEB=D

(1)求證:BC=DE;

(2)若B=35°,AFB=78°,直接寫出DGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,該拋物線與x軸的一個(gè)交點(diǎn)為(﹣1,0),請(qǐng)回答以下問題.

(1)求拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo);
(2)一元二次方程ax2+bx+c=0(a≠0)的解為;
(3)不等式ax2+bx+c<0(a≠0)的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用尺規(guī)在一個(gè)平行四邊形內(nèi)作菱形ABCD,下列作法中錯(cuò)誤的是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案