【題目】一副三角板如圖所示,疊放在一起.若固定△AOB,將△ACD繞著公共點A按順時針方向旋轉α(0α180).請你探索,當△ACD的一邊與△AOB的一邊平行時,相應的旋轉角α的度數(shù)_____

【答案】α30°ABCD;當α45°BOCA;當α75°AOCD;當α135°BOAD;當α165°BOCD

【解析】

根據(jù)旋轉的性質(zhì),分五種情況,①ABCD;②BOCA;③AOCD;④BOAD;⑤BOCD;進行討論.

ABCD時,α30°;

BOCA時,α45°;

AOCD時,α75°;

BOAD時,α135°

BOCD時,α165°,

故答案為:當α30°ABCD;當α45°BOCA;當α75°AOCD;當α135°BOAD;當α165°BOCD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,在RtABC中,ABAC,DBC邊上一點(不與點B、C重合)將線段AD繞點A逆時針旋轉90°得到AE,連接EC,則線段BDCE的數(shù)量關系是   ,位置關系是   ;

2)探究證明:如圖2,在RtABCRtADE中,ABAC,ADAE,將△ADE繞點A旋轉,使點D落在BC的延長線上時,連接EC,寫出此時線段AD,BD,CD之間的等量關系,并證明;

3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC45°.若BF13,CF5,請直接寫出AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了慶祝中國人民海軍成立70周年,某市舉行了海軍知識競賽,為了了解競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示。請根據(jù)圖表信息解答下列問題:

(1)在表中:m=___,n=___;

(2)補全頻數(shù)分布直方圖;

(3)若成績在90分以上(含90分)能獲獎,請你估計該是所有參賽的4500名中學生中大約有多少人能獲獎.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=

(1)求a,k的值及點B的坐標;

(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;

(3)在y軸上存在一點P,使得PDCODC相似,請你求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABO的直徑,AC是弦,點PBA延長線上一點,連接PC、BC,∠PCA=∠B

1)求證:PCO的切線;

2)若PC4PA2,求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°,AC=,BC=16.點O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過點AP是弧AB上的一個動點.

(1)求半徑OB的長;

(2)如果點P是弧AB的中點,聯(lián)結PC,求∠PCB的正切值;

(3)如果BA平分∠PBC,延長BPCA交于點D,求線段DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春曉中學為開展校園科技節(jié)活動,計劃購買A型、B型兩種型號的航模.若購買8A型航模和5B型航模需用2200元;若購買4A型航模和6B型航模需用1520元.求AB兩種型號航模的單價分別是多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,BC⊙O相切于點B,CD⊙O相切于點D,連結AD

(1)求證:AD∥OC

(2)小聰與小明在做這個題目的時候,對∠CDA∠AOC之間的關系進行了探究:

小聰說,∠CDA+∠AOC的值是一個固定的值;

小明說,∠CDA+∠AOC的值隨∠A度數(shù)的變化而變化.

∠CDA+∠AOC的值為y,∠A度數(shù)為x.你認為他們之中誰說的是正確的?若你認為小聰說的正確,請你求出這個固定值:若你認為小明說的正確,請你求出yx之間的關系.

查看答案和解析>>

同步練習冊答案