如圖,l∥m,等腰直角三角形ABC的直角頂點(diǎn)C在直線(xiàn)m上,若∠β=20°,則∠α的度數(shù)為


  1. A.
    25°
  2. B.
    30°
  3. C.
    20°
  4. D.
    35°
A
分析:根據(jù)平角的定義求出∠ACR,根據(jù)平行線(xiàn)的性質(zhì)得出∠FDC=∠ACR=70°,求出∠AFD,即可得到答案.
解答:解:∵∠β=20°,∠ACB=90°,
∴∠ACR=180°-90°-20°=70°,
∵l∥m,
∠FDC=∠ACR=70°,
∴∠AFD=∠FDC-∠A=70°-45°=25°,
∴∠a=∠AFD=25°,
故選A.
點(diǎn)評(píng):本題主要考查對(duì)平行線(xiàn)的性質(zhì),三角形的外角性質(zhì),對(duì)頂角、鄰補(bǔ)角等知識(shí)點(diǎn)的理解和掌握,求出∠AFD的度數(shù)是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm,等腰直角三角形PMN的斜邊MN=10cm,A點(diǎn)與N點(diǎn)重合,MN和AB在一條直線(xiàn)上,設(shè)等腰梯形ABCD不動(dòng),等腰直角三角形PMN沿AB所在直線(xiàn)以1cm/s的速度向右移動(dòng),直到點(diǎn)N與點(diǎn)B重合為止.
(1)等腰直角三角形PMN在整個(gè)移動(dòng)過(guò)程中與等腰梯形ABCD重疊部分的形狀由
 
形變化為
 
形;
(2)設(shè)當(dāng)?shù)妊苯侨切蜳MN移動(dòng)x(s)時(shí),等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2
①當(dāng)x=6時(shí),求y的值;
②當(dāng)6<x≤10時(shí),求y與x的函數(shù)關(guān)系.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是一個(gè)直四棱柱及其正視圖和俯視圖(等腰梯形).
(1)根據(jù)圖中所給數(shù)據(jù),可得俯視圖(等腰梯形)的高為
 

(2)在虛線(xiàn)框內(nèi)畫(huà)出其左視圖,并標(biāo)出各邊的長(zhǎng).(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)活動(dòng)課上,老師要求同學(xué)們先做下面的“循環(huán)分割”操作,然后再探索規(guī)律:
如圖1,是一等腰梯形紙片,其腰長(zhǎng)與上底長(zhǎng)相等,且底角分別60°和120°,按要求開(kāi)始操作(每次分割,紙片均不得留有剩余);
精英家教網(wǎng)
第1次分割:將原等腰梯形紙片分割成3個(gè)等邊三角形;
第2次分割:將上次分割出的一個(gè)等邊三角形分割成3個(gè)全等的等腰梯形,然后將剛分割出的一個(gè)等腰梯形分割成3個(gè)等邊三角形;
以后按第2次分割的方法進(jìn)行下去…請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)你在圖2中畫(huà)出前兩次分割后的圖案;
(2)若原等腰梯形的面積為a,請(qǐng)你通過(guò)操作、觀(guān)察,將第2次,第3次分割后所得的一個(gè)最小等邊三角形的面積分別填入下表:
 
分割次數(shù)(n) 1 2 3
一個(gè)最小等邊三角形的面積(S)
1
3
a
   
(3)請(qǐng)你猜想,分割所得的一個(gè)最小等邊三角形面積S與分割次數(shù)n有何關(guān)系?(請(qǐng)直接用含a的式子表示,不需寫(xiě)推理過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在A(yíng)B、AC上,且G、F分別是AB、AC的中點(diǎn).
(1)填空:GF的長(zhǎng)度為
2
2
2
2
,等腰梯形DEFG的面積為
6
6

(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF’G’(如圖2)
探究:在運(yùn)動(dòng)過(guò)程中,四邊形BDG’G能否為菱形?若能,請(qǐng)求出此時(shí)x的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)學(xué)活動(dòng)課上,老師要求同學(xué)們先做下面的“循環(huán)分割”操作,然后再探索規(guī)律:
如圖1,是一等腰梯形紙片,其腰長(zhǎng)與上底長(zhǎng)相等,且底角分別60°和120°,按要求開(kāi)始操作(每次分割,紙片均不得留有剩余);

第1次分割:將原等腰梯形紙片分割成3個(gè)等邊三角形;
第2次分割:將上次分割出的一個(gè)等邊三角形分割成3個(gè)全等的等腰梯形,然后將剛分割出的一個(gè)等腰梯形分割成3個(gè)等邊三角形;
以后按第2次分割的方法進(jìn)行下去…請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)你在圖2中畫(huà)出前兩次分割后的圖案;
(2)若原等腰梯形的面積為a,請(qǐng)你通過(guò)操作、觀(guān)察,將第2次,第3次分割后所得的一個(gè)最小等邊三角形的面積分別填入下表:
分割次數(shù)(n)123
一個(gè)最小等邊三角形的面積(S)數(shù)學(xué)公式a
(3)請(qǐng)你猜想,分割所得的一個(gè)最小等邊三角形面積S與分割次數(shù)n有何關(guān)系?(請(qǐng)直接用含a的式子表示,不需寫(xiě)推理過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案