【題目】如圖,在數(shù)軸上點(diǎn)A,點(diǎn)B,點(diǎn)C表示的數(shù)分別為﹣21,6

(1)線段AB的長度為   個單位長度,線段AC的長度為   個單位長度.

(2)點(diǎn)P是數(shù)軸上的一個動點(diǎn),從A點(diǎn)出發(fā),以每秒1個單位長度的速度,沿數(shù)軸的正方向運(yùn)動,運(yùn)動時間為t(0t8).用含t的代數(shù)式表示:線段BP的長為   個單位長度,點(diǎn)P在數(shù)軸上表示的數(shù)為   ;

(3)點(diǎn)M,點(diǎn)N都是數(shù)軸上的動點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒4個單位長度的速度運(yùn)動,點(diǎn)N從點(diǎn)C出發(fā)以每秒3個單位長度的速度運(yùn)動.設(shè)點(diǎn)M,N同時出發(fā),運(yùn)動時間為x秒.點(diǎn)M,N相向運(yùn)動,當(dāng)點(diǎn)MN兩點(diǎn)間的距離為13個單位長度時,求x的值,并直接寫出此時點(diǎn)M在數(shù)軸上表示的數(shù).

【答案】(1)3;8;(2)(3﹣t)或(t﹣3);﹣2+t;(3)x=3;M在數(shù)軸上表示的數(shù)是10.

【解析】

1)根據(jù)兩點(diǎn)間的距離公式可求線段AB的長度,線段AC的長度;

2)先根據(jù)路程=速度×?xí)r間求出點(diǎn)P運(yùn)動的路程,再分點(diǎn)P在點(diǎn)B的左邊和右邊兩種情況求解;

3)根據(jù)等量關(guān)系點(diǎn)M、N兩點(diǎn)間的距離為13個單位長度列出方程求解即可

1)線段AB的長度為1﹣(﹣2)=3個單位長度線段AC的長度為6﹣(﹣2)=8個單位長度;

2)線段BP的長為當(dāng)t3BP=3t;當(dāng)t3BP=t3,點(diǎn)P在數(shù)軸上表示的數(shù)為﹣2+t;

3)∵AC=813,∴M、N相遇后再走13個單位長度依題意有

4x+3x8=13

解得x=3

此時點(diǎn)M在數(shù)軸上表示的數(shù)是﹣2+4×3=10

故答案為:13;8;(2)(3t)或(t3);﹣2+t

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=90°,以O為頂點(diǎn)、OB為一邊畫∠BOC,然后再分別畫出∠AOC與∠BOC的平分線OM、ON.

(1)在圖1中,射線OC在∠AOB的內(nèi)部.

①若銳角∠BOC=30°,則∠MON= °;

②若銳角∠BOC=n°,則∠MON= °.

(2)在圖2中,射線OC在∠AOB的外部,且∠BOC為任意銳角,求∠MON的度數(shù).

(3)在(2)中,BOC為任意銳角改為BOC為任意鈍角”,其余條件不變,(圖3),求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班計(jì)劃購買籃球和排球若干個,買4個籃球和3個排球需要410元;買2個籃球和5個排球需要310元.

(1)籃球和排球單價各是多少元?

(2)若兩種球共買30個,費(fèi)用不超過1700元,籃球最多可以買多少個?

(3)如果購買這兩種球剛好用去520元,問有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:

1)如圖,在平面內(nèi)有不共線的3個點(diǎn)AB,C.

a)作直線AB,射線AC,線段BC

b)延長BC到點(diǎn)D,使CD=BC,連接AD;

c)作線段AB的中點(diǎn)E,連接CE;

d)測量線段CEAD的長度,直接寫出二者之間的數(shù)量關(guān)系_______.

(2) 5個大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請你在圖中的拼接圖形上再接一個正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子.

注意只需添加一個符合要求的正方形,并用陰影表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問題: 如圖1,將銳角三角形紙片ABC(BC>AC)經(jīng)過兩次折疊,得到邊AB,BC,CA上的點(diǎn)D,E,F(xiàn).使得四邊形DECF恰好為菱形.
小明的折疊方法如下:
如圖2,(1)AC邊向BC邊折疊,使AC邊落在BC邊上,得到折痕交AB于D; (2)C點(diǎn)向AB邊折疊,使C點(diǎn)與D點(diǎn)重合,得到折痕交BC邊于E,交AC邊于F.
老師說:“小明的作法正確.”
請回答:小明這樣折疊的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出△ABC關(guān)于y軸對稱的△ABlCl;

(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫出點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為原點(diǎn),A,B為數(shù)軸上兩點(diǎn),AB=15,且OA:OB=2

(1)A,B對應(yīng)的數(shù)分別為   ,   

(2)點(diǎn)A,B分別以2個單位/秒和5個單位/秒的速度相向而行,則幾秒后A,B相距1個單位長度?

(3)點(diǎn)AB以(2)中的速度同時向右運(yùn)動,點(diǎn)P從原點(diǎn)O4個單位秒的速度向右運(yùn)動,是否存在常數(shù)m,使得3AP+2PB﹣mOP為定值?若存在,請求出m值以及這個定值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

問題:如圖1,在平行四邊形ABCD中,EAD上一點(diǎn),AE=AB,EAB=60°,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=EAB,連接AG.

求證:EG =AG+BG.

小明同學(xué)的思路是:作∠GAH=EABGE于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理解決問題.

參考小明同學(xué)的思路,探究并解決下列問題:

(1)完成上面問題中的證明;

(2)如果將原問題中的EAB=60°”改為EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C是直角,AB=6cm,∠ABC=60°,將△ABC以點(diǎn)B為中心順時針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB邊延長線上的D處,則AC邊掃過的圖形眾人陰影部分的面積是

查看答案和解析>>

同步練習(xí)冊答案