【題目】如圖,點是等邊內(nèi)一點,.將繞點按順時針方向旋轉(zhuǎn)得,連接.
(1)求證:是等邊三角形;
(2)當時,試判斷的形狀,并說明理由;
(3)探究:當為多少度時,是等腰三角形?
【答案】(1)見解析(2)直角三角形;(3)為110°、125°、140°
【解析】
試題(1)由△BOC≌△ADC,得出CO=CD,再由∠OCD=60°,得出結(jié)論;
(2)由勾股定理的逆定理判斷△AOD為直角三角形;
(3)因為△AOD是等腰三角形,可得①∠AOD=∠ADO、②∠ODA=∠OAD、③∠AOD=∠DAO;若∠AOB=110°,∠COD=60°,∠BOC=190°-∠AOD,∠BOC=∠ADC=∠ADO+∠CDO由①∠AOD=∠ADO可得α=125°,由②∠ODA=∠OAD可得α=110°,由③∠AOD=∠DAO可得α=140°.
試題解析:(1)∵將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,
∴△BOC≌△ADC,∠OCD=60°,
∴CO=CD.
∴△COD是等邊三角形.
(2)△AOD為直角三角形,
∵△ADC≌△BOC,
∴DA=OB=5,
∵△COD是等邊三角形,
∴OD=OC=4,又OA=3,
∴DA2=OA2+OD2,
∴△AOD為直角三角形.
(3)因為△AOD是等腰三角形,
所以分三種情況:①∠AOD=∠ADO②∠ODA=∠OAD③∠AOD=∠DAO
∵∠AOB=110°,∠COD=60°,
∴∠BOC=190°-∠AOD,
而∠BOC=∠ADC=∠ADO+∠CDO
由①∠AOD=∠ADO可得∠BOC=∠AOD+60°,求得α=125°;
由②∠ODA=∠OAD可得∠BOC=150°-∠AOD,求得α=110°;
由③∠AOD=∠DAO可得∠BOC=240°-2∠AOD,求得α=140°;
綜上可知α=125°、α=110°或α=140°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( 。
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在北京市開展的“首都少年先鋒崗”活動中,某數(shù)學小組到人民英雄紀念碑站崗執(zhí)勤,并在活動后實地測量了紀念碑的高度. 方法如下:如圖,首先在測量點A處用高為1.5m的測角儀AC測得人民英雄紀念碑MN頂部M的仰角為35°,然后在測量點B處用同樣的測角儀BD測得人民英雄紀念碑MN頂部M的仰角為45°,最后測量出A,B兩點間的距離為15m,并且N,B,A三點在一條直線上,連接CD并延長交MN于點E. 請你利用他們的測量結(jié)果,計算人民英雄紀念碑MN的高度.
(參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( )
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是上的一動點(不與點A、B重合),點F是上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結(jié)論:
①;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為.其中正確的是____________.(把你認為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點O為AB中點,點P為直線BC上的動點(不與點B、點C重合),連接OC、OP,將線段OP繞點P順時針旋轉(zhuǎn)60°,得到線段PQ,連接BQ.
(1)如圖1,當點P在線段BC上時,試猜想寫出線段CP與BQ的數(shù)量關系,并證明你的猜想;
(2)如圖2,當點P在CB延長線上時,(1)中結(jié)論是否成立?(直接寫“成立”或“不成立”即可,不需證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y=ax2+bx+c的圖象過點(﹣1,0)和(m,0),請思考下列判斷:①abc<0;②4a+c<2b;③=1﹣;④am2+(2a+b)m+a+b+c<0;⑤|am+a|=正確的是( 。
A. ①③⑤ B. ①②③④⑤ C. ①③④ D. ①②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于點A(﹣3,2),B(n,﹣6)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)請直接寫出y1<y2時x的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com