【題目】拋物線yax2+bx+c的圖象如圖所示,那么一次函數(shù)ybx+b24ac與反比例函數(shù)y在同一坐標系內(nèi)的圖象大致是( 。

A.B.

C.D.

【答案】D

【解析】

根據(jù)二次函數(shù)開口方向,可以判斷出a的正負,根據(jù)對稱軸的位置和a的正負,可以判斷出b的正負,再根拋物線與y軸的交點,可以判斷出c的正負,然后根據(jù)a、b、c的正負去判斷一次函數(shù)和二次函數(shù)在坐標系中的位置即可.

∵二次函數(shù)圖象開口向上,

a0,

∵對稱軸為直線x=﹣0,

b0

x=﹣1時,ab+c0,當x1時,ab+c0,

∴(a+b+c)(ab+c)<0,

∵拋物線與x軸有兩個交點,

b24ac0,

∴一次函數(shù)圖象經(jīng)過第一、二、四象限,反比例函數(shù)圖象經(jīng)過第二四象限.

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,CD切⊙OC點,弦CFABE點,連結(jié)AC

1)求證:∠ACD=ACF;

2)當ADCDBE=2cm,CF=8cm,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

問題情境:在矩形ABCD中,點EBC邊的中點,將△ABE沿直線AE翻折,使點B與點F重合,直線AF交直線CD于點G

特例探究

實驗小組的同學發(fā)現(xiàn):

1)如圖1,當ABBC時,AGBC+CG,請你證明該小組發(fā)現(xiàn)的結(jié)論;

2)當ABBC4時,求CG的長;

延伸拓展

3)實知小組的同學在實驗小組的啟發(fā)下,進一步探究了當ABBC時,線段AG、BC、CG之間的數(shù)量關系,請你直接寫出實知小組的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在初中階段的函數(shù)學習中我們經(jīng)歷了確定函數(shù)的表達,利用函數(shù)圖象研究其性質(zhì)﹣﹣運用函數(shù)解決問題的學習過程,在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學的函數(shù)圖象.已知函數(shù)y2b的定義域為x≥3,且當x0y22由此,請根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y2b的圖象與性質(zhì)進行如下探究:

1)函數(shù)的解析式為:   

2)在給定的平面直角坐標系xOy中,畫出該函數(shù)的圖象并寫出該函數(shù)的一條性質(zhì):   ;

3)結(jié)合你所畫的函數(shù)圖象與yx+1的圖象,直接寫出不等式2b≤x+1的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司試銷一種成本單價為50/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于80/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元/件)可近似看作一次函數(shù)ykx+b的關系(如圖所示)

I)根據(jù)圖象,求一次函數(shù)ykx+b的解析式,并寫出自變量x的取值范圍;

(Ⅱ)該公司要想每天獲得最大的利潤,應把銷售單價定為多少?最大利潤值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的頂點坐標為A(﹣4,1),B(﹣2,3),C(﹣1,2).

1)畫出ABC關于原點O成中心對稱的ABC,點A,B,C分別是點A,B,C的對應點.

2)求過點B的反比例函數(shù)解析式.

3)判斷AB的中點P是否在(2)的函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校初三學生上周末使用手機的情況(選項:A.聊天;B.學習;C.購物;D.游戲;E.其他),隨機抽查了該校初三若干名學生,對其上周末使用手機的情況進行統(tǒng)計(每個學生只選一個選項),繪制了統(tǒng)計表和條形統(tǒng)計圖.

選項

人數(shù)

頻率

A

15

0.3

B

10

m

C

5

0.1

D

n

E

5

0.1

根據(jù)以上信息回答下列問題:

(1)這次調(diào)查的樣本容量是

(2)統(tǒng)計表中m ,n ,補全條形統(tǒng)計圖;

(3)若該校初三有540名學生,請估計該校初三學生上周末利用手機學習的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCDAD6,AB8,點PBC邊上的中點,點Q是△ACD的內(nèi)切圓圓O上的一個動點,點MCQ的中點,則PM的最大值是( 。

A.1B.+1C.3.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O的直徑,點C在半圓O上,AB8,∠CAB60°,P是弧上的一個點,連接AP,過點CCDAP于點D,連接BD,在點P移動過程中,BD長的最小值為_____

查看答案和解析>>

同步練習冊答案