【題目】已知,如圖,直線MN交⊙O于A、B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E。
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑。
【答案】(1)證明見解析;(2)7.5cm.
【解析】
試題分析:(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.
(2)由直角三角形的特殊性質(zhì),可得AD的長(zhǎng),又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.
試題解析:(1)連接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD為⊙O的半徑,
∴DE是⊙O的切線.
(2)∵∠AED=90°,DE=6,AE=3,
∴AD=.
連接CD.
∵AC是⊙O的直徑,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
則AC=15(cm).
∴⊙O的半徑是7.5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+6x﹣9的頂點(diǎn)為A,與y軸的交點(diǎn)為B,如果在拋物線上取點(diǎn)C,在x軸上取點(diǎn)D,使得四邊形ABCD為平行四邊形,那么點(diǎn)D的坐標(biāo)是( )
A.(﹣6,0) B.(6,0) C.(﹣9,0) D.(9,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(﹣2,a),B(1,b)是一次函數(shù)y=﹣2x+3的圖象上的兩個(gè)點(diǎn),則a與b的大小關(guān)系是( )
A. a>bB. a<bC. a=bD. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l與直線y=2x+1的交點(diǎn)的橫坐標(biāo)為2,與直線y=﹣x+2的交點(diǎn)的縱坐標(biāo)為1,求直線l對(duì)應(yīng)的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,連結(jié)AC、BC,D是線段OB上一動(dòng)點(diǎn),以CD為一邊向右側(cè)作正方形CDEF,連結(jié)BF,若S△OBC=8,AC=BC。
(1)求拋物線的解析式;
(2)求證:BF⊥AB;
(3)求∠FBE的度數(shù);
(4)當(dāng)D點(diǎn)沿x軸正方向移動(dòng)到點(diǎn)B時(shí),點(diǎn)E也隨著移動(dòng),求點(diǎn)E所走過(guò)的路線長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0)、B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△2016的直角頂點(diǎn)的坐標(biāo)為 ( )
A. 8065 B. 8064 C. 8063 D. 8062
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)等腰三角形一邊長(zhǎng)為4cm,另一邊長(zhǎng)為5cm,那么這個(gè)等腰三角形的周長(zhǎng)是( )
A.13cm B.14cm C.13cm或14cm D.以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”.
如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com