【題目】如圖,在△ABC中,ABBC,∠ABC90°EBC邊上一點(不與B、C重合)DAB延長線上一點且BDBE.FG分別為AE、CD的中點.

(1)求證:AECD.

(2)求證:△BFG為等腰直角三角形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)由已知條件可證明△ABE≌△CBD(SAS),即可得出AECD

(2)由全等三角形的性質(zhì)得出AECD,∠BAE=∠BCD,由直角三角形斜邊上的中線性質(zhì)得出BFAEAFBGCDCG,得出BFBG,∠BAE=∠ABF,∠BCD=∠CBG,證出∠ABF=∠CBG,得出∠FBG=∠ABC90°,即可得出結(jié)論.

證明:(1)∵∠ABC90°,

∴∠CBD90°,

在△ABE和△CBD中,

∴△ABE≌△CBD(SAS),

AECD;

(2)(1)得:△ABE≌△CBD,

AECD,∠BAE=∠BCD,

∵∠ABE=∠CBD90°,點FG分別為AE、CD的中點,

BFAEAF,BGCDCG,

BFBG,∠BAE=∠ABF,∠BCD=∠CBG

∴∠ABF=∠CBG,

∴∠FBG=∠ABC90°

∴△BFG為等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD,過EEFDCBC的延長線于F.

(1)證明:四邊形CDEF是平行四邊形;

(2)若四邊形CDEF的周長是25cm,AC的長為5cm,求線段AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)價為2000元的冰箱以2400元售出,平均毎天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)査表明:這種冰箱的售價毎降低50元,平均每天就能多售出4.

1)假設(shè)每臺冰箱降價元,商場每天銷售這種冰箱的利潤為元,請寫出間的函數(shù)表達(dá)式;(不要求寫出自變量的取值范圍)

2)商場要想在這種冰箱銷售中毎天盈利4800元,同時又要使百姓得到實惠,毎臺冰箱應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點DAF的延長線上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD2AB,∠ABC90°,將△ABC沿BC翻折得到△A′BC,且A′C、D三點共線,∠A′CB52°,則∠CAD( )

A.78°B.66°C.52°D.38°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年五一節(jié)小明外出爬山,他從山腳爬到山頂?shù)倪^程中中途休息了一段時間設(shè)他從山腳出發(fā)后所用的時間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示下列說法錯誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙OBC于點D,過點DDE⊥AC,交AC于點E,AC的反向延長線交⊙O于點F.

(1)求證:DE⊙O的切線.

(2)若DE+EA=4,⊙O的半徑為5,求CF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯誤的是( 。

A. 圖象的對稱軸是直線x=﹣1 B. 當(dāng)x>﹣1時,yx的增大而減小

C. 當(dāng)﹣3<x<1時,y<0 D. 一元二次方程ax2+bx+c=0的兩個根是﹣3,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個半徑為,圓心角為的扇形,如圖放置在直線上(與直線重合),然后將這個扇形在直線上無摩擦滾動至的位置,在這個過程中,點運動到點的路徑長度為(

A. B. 3π+3 C. D. 5π-3

查看答案和解析>>

同步練習(xí)冊答案