(2013•江寧區(qū)二模)如圖,已知二次函數(shù)y=ax2+bx+3的圖象過(guò)點(diǎn)A(-1,0),對(duì)稱軸為過(guò)點(diǎn)(1,0)且與y軸平行的直線.
(1)求該二次函數(shù)的關(guān)系式;
(2)結(jié)合圖象,解答下列問(wèn)題:
①當(dāng)x取什么值時(shí),該函數(shù)的圖象在x軸上方?
②當(dāng)-1<x<2時(shí),求函數(shù)y的取值范圍.
分析:(1)將A坐標(biāo)代入二次函數(shù)解析式中,利用對(duì)稱軸公式列出關(guān)系式,聯(lián)立求出a與b的值,即可確定出二次函數(shù)解析式;
(2)①由二次函數(shù)圖象與x軸的交點(diǎn)及對(duì)稱軸求出另一個(gè)交點(diǎn)坐標(biāo),利用圖象即可得出,該函數(shù)的圖象在x軸上方時(shí)x的范圍;
②根據(jù)二次函數(shù)的性質(zhì)求出y的最大值,根據(jù)x的范圍即可確定出y的范圍.
解答:解:(1)根據(jù)題意可得:
a-b+3=0
-
b
2a
=1

解得:
a=-1
b=2
,
則二次函數(shù)解析式為y=-x2+2x+3=-(x-1)2+4;

(2)∵函數(shù)圖象與x軸的一個(gè)交點(diǎn)坐標(biāo)為A(-1,0),且對(duì)稱軸為直線x=1,
∴函數(shù)圖象與x軸的另一個(gè)交點(diǎn)為(3,0),
∴當(dāng)-1<x<3 時(shí),該函數(shù)的圖象在x軸上方;

(3)∵函數(shù)的頂點(diǎn)坐標(biāo)為(1,4),
∴當(dāng)x=1時(shí),y的最大值為4,
∴當(dāng)-1<x<2時(shí),函數(shù)y的取值范圍為0<y≤4.
點(diǎn)評(píng):此題考查了待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)的性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)二模)甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計(jì)圖如圖所示,則符合這一結(jié)果的實(shí)驗(yàn)可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)二模)如圖,若將木條a繞點(diǎn)O旋轉(zhuǎn)后與木條b平行,則旋轉(zhuǎn)角的最小值為
15
15
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)二模)已知⊙O1的半徑是2cm,⊙O2的半徑是3cm,若這兩圓相交,則圓心距d(cm)的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)二模)在如圖所示的5×5方格中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC是格點(diǎn)三角形(即頂點(diǎn)恰好是正方形的頂點(diǎn)),將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則在△ABC掃過(guò)的區(qū)域中(不含邊界上的點(diǎn)),到點(diǎn)O的距離為無(wú)理數(shù)的格點(diǎn)的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)二模)如圖1,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2-2x+2的圖象與y軸交于點(diǎn)C,以O(shè)C為一邊向左側(cè)作正方形OCBA.

(1)判斷點(diǎn)B是否在二次函數(shù)y=-x2-2x+2的圖象上?并說(shuō)明理由;
(2)用配方法求二次函數(shù)y=-x2-2x+2的圖象的對(duì)稱軸;
(3)如圖2,把正方形OCBA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α后得到正方形A1B1C1O(0°<α<90°).
①當(dāng)tanα﹦
12
時(shí),二次函數(shù)y=-x2-2x+2的圖象的對(duì)稱軸上是否存在一點(diǎn)P,使△PB1C1為直角三角形?若存在,請(qǐng)求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
②在二次函數(shù)y=-x2-2x+2的圖象的對(duì)稱軸上是否存在一點(diǎn)P,使△PB1C1為等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出此時(shí)tanα的值;若不存在,請(qǐng)說(shuō)明理由﹒

查看答案和解析>>

同步練習(xí)冊(cè)答案