【題目】如圖,在直角坐標系中,直線分別交軸、軸于點、,直線過點且分別交軸負半軸、直線于點、,.
(1)求直線的解析式及點的坐標;
(2)若點為直線上一點,過作軸,交直線于,且點的橫坐標為,若,求的值.
【答案】(1)直線l2的解析式為:y=2x1,E(1,1);(2)n=或n=.
【解析】
(1)首先易得A、B的坐標,進而求得D的坐標,然后根據(jù)待定系數(shù)法求得直線l2的解析式,聯(lián)立解析式,解方程組即可求得E的坐標;
(2)根據(jù)題意列出|n+22n+1|=1,解方程即可求得.
解:(1)由直線l1:y=x+2易得A(2,0),B(0,2),
∴OB=2,
∴OD=OB=1,即D(0,1),
∵直線l2:y=kx+b過點C(,2),D(0,1),
∴,解得:,
∴直線l2的解析式為:y=2x1,
解方程組 得:,
∴E(1,1);
(2)∵點P為直線l1上一點,點P的橫坐標為n,
∴P(n,n+2),
∵過P作PQ∥y軸,交直線l2于Q,
∴Q(n,2n1),
∵BD=3,PQ=BD,
∴PQ=1,
∴|n+22n+1|=1,
解得:n=或n=.
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)的圖像與軸、軸分別交于點、,以為邊在第二象限內作等邊.
(1)求點的坐標;
(2)在第二象限內有一點,使,求點的坐標;
(3)將沿著直線翻折,點落在點處;再將繞點順時針方向旋轉15°,點落在點處,過點作軸于.求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解下列方程時,配方有錯誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣)2=
D.3x2﹣4x﹣2=0化為(x﹣)2=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個粒子在軸上及第一象限內運動,第1次從運動到,第2次從運動到,第3次從運動到,它接著按圖中箭頭所示的方向運動.則第2019次時運動到達的點為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從、兩地同時相向勻速行駛,當乙車到達地后,繼續(xù)保持原速向遠離的方向行駛,而甲車到達地后,休息半小時后立即掉頭,并以原速的倍與乙車同向行駛,經(jīng)過一段時間后,兩車先后到達距地的地并停下來,設兩車行駛的時間為,兩車之間的距離為,與的函數(shù)關系如圖,則當甲車從地掉頭追到乙車時,乙車距離地__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一邊長為4正方形放在平面直角坐標系中,其中為原點,點、分別在軸、軸上,為射線上任意一點
(1)如圖1,若點坐標為,連接交于點,則的面積為__________;
(2)如圖2,將沿翻折得,若點在直線圖象上,求出點坐標;
(3)如圖3,將沿翻折得,和射線交于點,連接,若,平面內是否存在點,使得是以為直角邊的等腰直角三角形,若存在,請求出所有點坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,⊙O為內切圓,E為切點.
(1)求證:AO2=AEAD;
(2)若AO=4cm,AD=5cm,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點F、C是⊙O上兩點,且點C為弧BF的中點,連接AC、AF,過點C作CD⊥AF交AF延長線于點D.
(1)求證:CD是⊙O的切線;
(2)判斷線段AB、AF與AD之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有個,黑球有個,綠球有個,第一次任意摸出一個球(不放回),第二次再摸出一個球,則兩次摸到的都是紅球的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com