【題目】如圖所示,在□ABCD中,E,F(xiàn)分別在BC,AD上,若想使四邊形AFCE為平行四邊形,須添加一個(gè)條件,這個(gè)條件可以是( )
①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE。
A. ①或② B. ②或③ C. ③或④ D. ①或③或④
【答案】C
【解析】∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,∠B=∠D,AD∥BC,AD=BC,
如果∠BAE=∠FCD,
則△ABE≌△DFC(ASA)
∴BE=DF,
∴AD-DF=BC-BE,
即AF=CE,
∵AF∥CE,
∴四邊形AFCE是平行四邊形;(③正確)
如果∠BEA=∠FCE,
則AE∥CF,
∵AF∥CE,
∴四邊形AFCE是平行四邊形;(④正確)
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩張相同的矩形紙片ABCD和A′B′C′D′,其中AB=3,BC=8.
(1)若將其中一張矩形紙片ABCD沿著BD折疊,點(diǎn)A落在點(diǎn)E處(如圖1),設(shè)DE與BC相交于點(diǎn)F,求BF的長(zhǎng);
(2)若將這兩張矩形紙片交叉疊放(如圖2),判斷四邊形MNPQ的形狀,并證明.四邊形MNPQ的最大面積是_________.(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+2與拋物線(xiàn)y=ax2+bx+6(a≠0)相交于A(yíng)( , )和B(4,m),點(diǎn)P是線(xiàn)段AB上異于A(yíng)、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線(xiàn)于點(diǎn)C.
(1)求拋物線(xiàn)的解析式;
(2)是否存在這樣的P點(diǎn),使線(xiàn)段PC的長(zhǎng)有最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)求△PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
小明在一本課外讀物上看到一道有意思的數(shù)學(xué)題:例1、解不等式:,根據(jù)絕對(duì)值的幾何意義,到原點(diǎn)距離小于1的點(diǎn)在數(shù)軸上集中在-1和+1之間,如圖:
所以,該不等式的解集為-1<x<1.
因此,不等式的解集為x<-1或x>1.
根據(jù)以上方法小明繼續(xù)探究:例2:求不等式:的解集,即求到原點(diǎn)的距離大于2小于5的點(diǎn)的集合就集中在這樣的區(qū)域內(nèi),如圖:
所以,不等式的解集為-5<x<-2或2<x<5.
仿照小明的做法解決下面問(wèn)題:
(1)不等式的解集為____________.
(2)不等式的解集是____________.
(3)求不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形的長(zhǎng)和寬分別是7cm和3cm,分別繞著它的長(zhǎng)和寬所在的直線(xiàn)旋轉(zhuǎn)一周,回答下列問(wèn)題:
(1)如圖(1),繞著它的寬所在的直線(xiàn)旋轉(zhuǎn)一周,所得到的是什么樣的幾何體?得到的幾何體的體積是多少?(π取3.14)
(2)如圖(2),繞著它的長(zhǎng)所在的直線(xiàn)旋轉(zhuǎn)一周,所得到的是什么樣的幾何體?得到的幾何體的體積是多少?(π取3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以△ABC的兩條邊為邊做平行四邊形,所做的平行四邊形有____ __個(gè);
平行四邊形第四個(gè)頂點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線(xiàn)為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線(xiàn)y= x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一點(diǎn),E在BC的延長(zhǎng)線(xiàn)上,且AE=BD,BD的延長(zhǎng)線(xiàn)與AE交于點(diǎn)F.試通過(guò)觀(guān)察、測(cè)量、猜想等方法來(lái)探索BF與AE有何特殊的位置關(guān)系,并說(shuō)明你猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】順次連接四邊形各邊中點(diǎn),所得的圖形是__________。順次連接對(duì)角線(xiàn)______________的四邊形的各邊中點(diǎn)所得的圖形是矩形。順次連接對(duì)角線(xiàn)_________的四邊形的各邊中點(diǎn)所得的四邊形是菱形。順次連接對(duì)角線(xiàn)_________的四邊形的各邊中點(diǎn)所得的四邊形是正方形。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com