如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE、CE,△ADE的面積為3,則BC的長(zhǎng)為   
【答案】分析:過(guò)D點(diǎn)作DF⊥BC,垂足為F,過(guò)E點(diǎn)作EG⊥AD,交AD的延長(zhǎng)線與G點(diǎn),由旋轉(zhuǎn)的性質(zhì)可知△CDF≌△EDG,從而有CF=EG,由△ADE的面積可求EG,得出CF的長(zhǎng),由矩形的性質(zhì)得BF=AD,根據(jù)BC=BF+CF求解.
解答:解:過(guò)D點(diǎn)作DF⊥BC,垂足為F,過(guò)E點(diǎn)作EG⊥AD,交AD的延長(zhǎng)線與G點(diǎn),
由旋轉(zhuǎn)的性質(zhì)可知CD=ED,
∵∠EDG+∠CDG=∠CDG+∠FDC=90°,
∴∠EDG=∠FDC,又∠DFC=∠G=90°,
∴△CDF≌△EDG,∴CF=EG,
∵S△ADE=AD×EG=3,AD=2,
∴EG=3,則CF=EG=3,
依題意得四邊形ABFD為矩形,∴BF=AD=2,
∴BC=BF+CF=2+3=5.
故答案為:5.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì)的運(yùn)用,直角梯形的性質(zhì)的運(yùn)用.關(guān)鍵是通過(guò)DC、DE的旋轉(zhuǎn)關(guān)系,作出旋轉(zhuǎn)的三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)E是AB邊上一點(diǎn),AE=BC,DE⊥EC,取DC的中點(diǎn)F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長(zhǎng)FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點(diǎn)E,連接CE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案