【題目】本題9把代數(shù)式通過(guò)配湊等手段,得到完全平方式再運(yùn)用完全平方式是非負(fù)性這一性質(zhì)增加問(wèn)題的條件,這種解題方法叫做配方法配方法在代數(shù)式求值,解方程,最值問(wèn)題等都有著廣泛的應(yīng)用

例如:用配方法因式分解:a2+6a+8

原式=a2+6a+9-1

=a+32 –1

=a+3-1)(a+3+1

=a+2)(a+4

M=a2-2ab+2b2-2b+2,利用配方法求M的最小值

a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1

=a-b2+b-12 +1

a-b20,(b-12 0

當(dāng)a=b=1時(shí),M有最小值1

請(qǐng)根據(jù)上述材料解決下列問(wèn)題:

1在橫線上添上一個(gè)常數(shù)項(xiàng)使之成為完全平方式:a 2+4a+

2用配方法因式分解 a2-24a+143

3M=a2+2a +1,M的最小值

4已知a2+b2+c2-ab-3b-4c+7=0,a+b+c的值

【答案】14;2;3M的最小值-3;4a+b+c=5

【解析】

試題1添加的常數(shù)項(xiàng)為一次項(xiàng)系數(shù)4一半的平方,即這個(gè)常數(shù)項(xiàng)為4;2類比例題進(jìn)行分解因式即可;3類比例題求M的最小值即可;

試題解析:14;

(2)a2-24a+143=a2-24a+144-1==a-12+1)(a-12-1=

(3)M=a2+2a +1=a2+2a+4-3=,

0,

當(dāng)a=-4時(shí),M有最小值-3

(4)

,

,

解得a=1,b=2,c=2

a+b+c=1+2+2=5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形紙片ABCD折疊起來(lái),使其對(duì)角頂點(diǎn)AC重合,DG重合.若長(zhǎng)方形的長(zhǎng)BC8,寬AB4,求:

1CF的長(zhǎng);

2)求三角形GED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)為正方形的邊上任意一點(diǎn),在正方形內(nèi)部做等腰直角

1)如圖1,若,則_________(請(qǐng)直接寫(xiě)出答案)

2)作關(guān)于的對(duì)稱點(diǎn),連接于點(diǎn)

①補(bǔ)全圖形1

②證明:四邊形ECHF為平行四邊形.

3)在(2)的條件下,連接,請(qǐng)直接寫(xiě)出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)平行四邊形中,兩對(duì)平行于邊的直線將這個(gè)平行四邊形分為九個(gè)小平行四邊形,如果原來(lái)這個(gè)平行四邊形的面積為,而中間那個(gè)小平行四邊形(陰影部分)的面積為20平方厘米,則四邊形的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售一種飲料,平均每天可售出100箱,每箱利潤(rùn)120元.天氣漸熱,為了擴(kuò)大銷售,增加利潤(rùn),超市準(zhǔn)備適當(dāng)降價(jià).據(jù)測(cè)算,若每箱飲料每降價(jià)1元,每天可多售出2箱.針對(duì)這種飲料的銷售情況,請(qǐng)解答以下問(wèn)題:

(1)當(dāng)每箱飲料降價(jià)20元時(shí),這種飲料每天銷售獲利多少元?

(2)在要求每箱飲料獲利大于80元的情況下,要使每天銷售飲料獲利14400元,問(wèn)每箱應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(-4,2)、B(0,4)、C(0,2),

(1)畫(huà)出ABC關(guān)于點(diǎn)C成中心對(duì)稱的A1B1C;平移ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫(huà)出平移后對(duì)應(yīng)的A2B2C2;

(2)A1B1C和A2B2C2關(guān)于某一點(diǎn)成中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校獎(jiǎng)勵(lì)給王偉和李麗上海世博園門(mén)票共兩張,其中一張為指定日門(mén)票,另一張為普通日門(mén)票。王偉和李麗分別轉(zhuǎn)動(dòng)下圖的甲、乙兩個(gè)轉(zhuǎn)盤(pán)(轉(zhuǎn)盤(pán)甲被二等分、轉(zhuǎn)盤(pán)乙被三等分)確定指定日門(mén)票的歸屬,在兩個(gè)轉(zhuǎn)盤(pán)都停止轉(zhuǎn)動(dòng)后,若指針?biāo)傅膬蓚(gè)數(shù)字之和為 偶數(shù),則王偉獲得指定日門(mén)票;若指針?biāo)傅膬蓚(gè)數(shù)字之和為奇數(shù),則李麗獲得指定日門(mén)票;若指針指向分隔線,則重新轉(zhuǎn)動(dòng)。你認(rèn)為這個(gè)方法公平嗎?請(qǐng)畫(huà)樹(shù)狀圖或列表,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在長(zhǎng)方形ABCD中,AB=12cm,BC=10cm,點(diǎn)PA出發(fā),沿A→B→C→D的路線運(yùn)動(dòng),到D停止;點(diǎn)QD點(diǎn)出發(fā),沿D→C→B→A路線運(yùn)動(dòng),到A點(diǎn)停止.若P、Q兩點(diǎn)同時(shí)出發(fā),速度分別為每秒lcm、2cm,a秒時(shí)P、Q兩點(diǎn)同時(shí)改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點(diǎn)速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運(yùn)動(dòng)時(shí)間x(秒)的圖象.

(1)求出a值;

(2)設(shè)點(diǎn)P已行的路程為y1(cm),點(diǎn)Q還剩的路程為y2(cm),請(qǐng)分別求出改變速度后,y1、y2和運(yùn)動(dòng)時(shí)間x(秒)的關(guān)系式;

(3)P、Q兩點(diǎn)都在BC邊上,x為何值時(shí)P、Q兩點(diǎn)相距3cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,延長(zhǎng)使,以為邊作正方形,延長(zhǎng),連接,的中點(diǎn),連接分別與交于點(diǎn).則下列說(shuō)法:①;②;③;④.其中正確的有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案