年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,、為對(duì)角線(xiàn),點(diǎn)、、、分別為、、、邊的中點(diǎn),下列說(shuō)法:
①當(dāng)時(shí),、、、四點(diǎn)共圓.②當(dāng)時(shí),、、、四點(diǎn)共圓.③當(dāng)且時(shí),、、、四點(diǎn)共圓.其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系△ABC是格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格線(xiàn)的交點(diǎn)上)
(1)先作△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A1B1C1,再把△A1B1C1向上平移4個(gè)單位長(zhǎng)度得到△A2B2C2;
(2)△A2B2C2與△ABC是否關(guān)于某點(diǎn)成中心對(duì)稱(chēng)?若是,直接寫(xiě)出對(duì)稱(chēng)中心的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AE⊥BC于點(diǎn)E,∠B=22.5°,AB的垂直平分線(xiàn)DN交BC于點(diǎn)D,交AB于點(diǎn)N,DF⊥AC于點(diǎn)F,交AE于點(diǎn)M.求證:
(1)AE=DE;
(2)EM=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣+bx+c交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3),點(diǎn)D是x軸上一動(dòng)點(diǎn),連接CD,將線(xiàn)段CD繞點(diǎn)D旋轉(zhuǎn)得到DE,過(guò)點(diǎn)E作直線(xiàn)l⊥x軸,垂足為H,過(guò)點(diǎn)C作CF⊥l于F,連接DF.
(1)求拋物線(xiàn)解析式;
(2)若線(xiàn)段DE是CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到,求線(xiàn)段DF的長(zhǎng);
(3)若線(xiàn)段DE是CD繞點(diǎn)D旋轉(zhuǎn)90°得到,且點(diǎn)E恰好在拋物線(xiàn)上,請(qǐng)求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,將△ABC沿∠B的平分線(xiàn)折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,設(shè)折痕交AC邊于點(diǎn)E,繼續(xù)沿直線(xiàn)DE折疊,若折疊后,BE與線(xiàn)段DC相交,且交點(diǎn)不與點(diǎn)C重合,則∠BAC的度數(shù)應(yīng)滿(mǎn)足的條件是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖(1),若分別以△ABC的三邊AC、BC、AB為邊向三角形外側(cè)作正方形ACDE、BCFG和ABMN,則稱(chēng)這三個(gè)正方形為△ABC的外展三葉正方形,其中任意兩個(gè)正方形為△ABC的外展
雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2.
①如圖(2),當(dāng)∠ACB=90°時(shí),求證:S1=S2;
②如圖(3),當(dāng)∠ACB≠90°時(shí),S1與S2是否仍然相等,請(qǐng)說(shuō)明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF、△AEN、△BGM的面積和為S,請(qǐng)利用圖(1)探究:當(dāng)∠ACB的度數(shù)發(fā)生變化時(shí),S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,、、三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將的面積直接填寫(xiě)在橫線(xiàn)上.__________________
(2)我們把上述求面積的方法叫做構(gòu)圖法.若三邊的長(zhǎng)分別為、、(),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為)畫(huà)出相應(yīng)的,并求出它的面積.
(3) 若△ABC三邊的長(zhǎng)分別為、、 (m>0,n>0,且m≠n),請(qǐng)利用圖③的長(zhǎng)方形網(wǎng)格試運(yùn)用構(gòu)圖法求出這三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)設(shè)計(jì)了一款工藝品,每件成本元,為了合理定價(jià),現(xiàn)投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是元時(shí),每天的銷(xiāo)售量是件,若銷(xiāo)售單價(jià)每降低元,每天就可多售出件,但要求銷(xiāo)售單價(jià)不得低于元.如果降價(jià)后銷(xiāo)售這款工藝品每天能盈利元,那么此時(shí)銷(xiāo)售單價(jià)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com