【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸與C、A兩點,點B是x軸上一點,且橫坐標(biāo)為2,在OA上取一點H,使得OH=OB.
(1) 求點C的坐標(biāo).
(2) 求CH所在直線的表達(dá)式.
(3) 若點P在直線CH上運(yùn)動,是否存在一點P,使得△PBC的面積是△AHB面積的,若存在,求出點P的坐標(biāo),若不存在,說明理由.
【答案】(1)(-3,0)(2)y=x+2(3)(-2, )(-4,-)
【解析】分析:(1)令y=0,求出x的值,即可得到C點的坐標(biāo);
(2)先確定點B的坐標(biāo)和H的坐標(biāo),即可求出直線CH的解析式;
(3)先求出△ABH的面積,進(jìn)而得出△PBC的面積,利用面積公式求出點P的縱坐標(biāo),即可得出結(jié)論.
詳解:(1)直線y=x+3,當(dāng)y=0時,x=-3
點的坐標(biāo)是(-3,0).
(2)∵OB=OH,B點橫坐標(biāo)為2
∴H(0,2)
設(shè)直線CH的表達(dá)式為y=kx+b
把C(-3,0),H(0,2)代入直線CH的表達(dá)式得k=,b=2
∴直線CH的表達(dá)式為y=x+2
(3)S△AHB=AH·OH=×2×1=1
S△PBC=S△AHB=
設(shè)P(m,n),
S△PBC=·BC·|n|=×5·|n|=
|n|=
∴n=±
∴P1(m, ),P2(m,-)
將P1,P2代入直線CH的表達(dá)式y=x+2 中得,
P1(-2, ),P2(-4,-)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如:m=n=0時,我們稱使得成立的一對數(shù)m,n為“相伴數(shù)對”,記為(m,n).
(1)若(m,1)是“相伴數(shù)對”,則m=_____;
(2)(m,n)是“相伴數(shù)對”,則代數(shù)式m﹣[n+(6﹣12n﹣15m)]的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目(被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請將兩個統(tǒng)計圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請估計該校喜愛電視劇節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)【證法回顧】證明:三角形中位線定理.
已知:如圖1,DE是△ABC的中位線.
求證: .
證明:添加輔助線:如圖1,在△ABC中,延長DE (D、E分別是AB、AC的中點)到點F,使得EF=DE,連接CF;
請繼續(xù)完成證明過程:
(2)【問題解決】
如圖2,在正方形ABCD中,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=2,DF=3,∠GEF=90°,求GF的長.
(3)【拓展研究】
如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=,DF=2,∠GEF=90°,求GF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)體育課上,某中學(xué)對七年級男生進(jìn)行了引體向上測試,以能做7個為標(biāo)準(zhǔn)多于標(biāo)準(zhǔn)的次
數(shù)記為正數(shù),不足的次數(shù)記為負(fù)數(shù),其中8名男生的成績?yōu)?/span>+2,-1,+3,0,-2,-3,+1,0.
(1)這8名男生中達(dá)到標(biāo)準(zhǔn)的占百分之幾?
(2)他們共做了多少次引體向上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元,已知綠茶每千克成本50元,在第一個月的試銷時間內(nèi)發(fā)現(xiàn),銷量w(kg)隨銷售單價x(元/kg)的變化而變化,具體變化規(guī)律如下表所示
銷售單價x(元/kg) | … | 70 | 75 | 80 | 85 | 90 | … |
銷售量w(kg) | … | 100 | 90 | 80 | 70 | 60 | … |
設(shè)該綠茶的月銷售利潤為y(元)(銷售利潤=單價×銷售量﹣成本﹣投資).
(1)請根據(jù)上表,寫出w與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍).并求出x為何值時,y的值最大?
(3)若在第一個月里,按使y獲得最大值的銷售單價進(jìn)行銷售后,在第二個月里受物價部門干預(yù),銷售單價不得高于90元,要想在全部收回投資的基礎(chǔ)上使第二個月的利潤達(dá)到1700元,那么第二個月里應(yīng)該確定銷售單價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=16 km,CB=11 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法: ①2a+b=0;②當(dāng)-1≤x≤3時,y<0;③若(x1 , y1)、(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時,y1<y2;④9a+3b+c=0,
其中正確的是( )
A.①②③
B.①②④
C.①④
D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com