【題目】小穎同學(xué)在手工制作中,把一個邊長為12cm的等邊三角形紙片貼到一個圓形的紙片上,若三角形的三個頂點恰好都在這個圓上,則圓的半徑為( )
A.2 cm
B.4 cm
C.6 cm
D.8 cm
【答案】B
【解析】解:過點A作BC邊上的垂線交BC于點D,過點B作AC邊上的垂線交AD于點O,則O為圓心.
設(shè)⊙O的半徑為R,由等邊三角形的性質(zhì)知:∠OBC=30°,OB=R.
∴BD=cos∠OBC×OB= R,BC=2BD= R.
∵BC=12,
∴R= =4 .
故選B.
作等邊三角形任意兩條邊上的高,交點即為圓心,將等邊三角形的邊長用含半徑的代數(shù)式表示出來,列出方程進(jìn)行即可解決問題.此題主要考查等邊三角形外接圓半徑的求法、銳角三角函數(shù),垂徑定理等知識,解題的關(guān)鍵是作等邊三角形任意兩條邊上的高,交點即為圓心,學(xué)會構(gòu)建方程解決問題,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年黔西南州教育局組織全州中小學(xué)生參加全省安全知識網(wǎng)絡(luò)競賽,在全州安全知識競賽結(jié)束后,通過網(wǎng)上查詢,某校一名班主任對本班成績(成績?nèi)≌麛?shù),滿分100分)作了統(tǒng)計分析,繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖,請你根據(jù)圖表提供的信息,解答下列問題:
(1)頻數(shù)分布表中a= , b= , c=
(2)補(bǔ)全頻數(shù)分布直方圖
(3)為了激勵學(xué)生增強(qiáng)安全意識,班主任準(zhǔn)備從超過90分的學(xué)生中選2人介紹學(xué)習(xí)經(jīng)驗,那么取得100分的小亮和小華同時被選上的概率是多少?請用列表法或畫樹狀圖加以說明,并列出所有等可能結(jié)果.
頻數(shù)分布表
分組(分) | 頻數(shù) | 頻率 |
50<x 60 | 2 | 0.04 |
60<x 70 | 12 | a |
70<x<80 | b | 0.36 |
80<x 90 | 14 | 0.28 |
90<x 100 | c | 0.08 |
合計 | 50 | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D在邊BC上,DE∥AB交AC于E,延長DE至點F,使EF=AE,聯(lián)結(jié)AF、BE和CF.
(1)求證:△EDC是等邊三角形;
(2)找出圖中所有的全等三角形,用符號“≌”表示,并對其中的一組加以證明;
(3)若BE⊥AC,試說明點D在BC上的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線n與過原點的直線m交于點P,P點的坐標(biāo)如圖所示,直線n與y軸交于點A;若OA=OP;
(1)求A點的坐標(biāo);
(2)求直線m,n的函數(shù)表達(dá)式;
(3)求△AOP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰Rt△ABC和等腰Rt△DEF中,∠BCA=∠FDE=90°,AB=4,EF=8.點A、C、D、E在一條直線上,等腰Rt△DEF靜止不動,初始時刻,C與D重合,之后等腰Rt△ABC從C出發(fā),沿射線CE方向以每秒1個單位長度的速度勻速運(yùn)動,當(dāng)A點與E點重合時,停止運(yùn)動.設(shè)運(yùn)動時間為t秒(t≥0).
(1)直接寫出線段AC、DE的長度;
(2)在等腰Rt△ABC的運(yùn)動過程中,設(shè)等腰Rt△ABC和等腰Rt△DEF重疊部分的面積為S,請直接寫出S與t的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)在整個運(yùn)動過程中,當(dāng)線段AB與線段EF相交時,設(shè)交點為點M,點O為線段CE的中點;是否存在這樣的t,使點E、O、M三點構(gòu)成的三角形是等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有公路l1同側(cè)、l2異側(cè)的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設(shè)計要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不要求寫出畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,給出下列結(jié)論:
①∠1=∠2;②BE=CF;③△CAN≌△ABM;④CD=DN其中正確的結(jié)論是( )
A. ①② B. ②③ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,D為△ABC的邊AB的延長線上一點,過D作DF⊥AC,垂足為F,交BC于E,且BD=BE,求證:△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=a,BC=b,DE垂直平分AB,則(1)△BEC的周長為_____;(2)若EF=BF,BE⊥AC于E,則∠EFC=______°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com