【題目】如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c經過點A(3,0)和點B(2,3),過點A的直線與y軸的負半軸相交于點C,且tan∠CAO=.
(1)求這條拋物線的表達式及對稱軸;
(2)聯(lián)結AB、BC,求∠ABC的正切值;
(3)若點D在x軸下方的對稱軸上,當S△DBC=S△ADC時,求點D的坐標.
【答案】(1)y=-x2+2x+3,對稱軸x=1;(2)tan∠ABC=1;(3)點D的坐標為(1,-4).
【解析】
(1)把A(3,0)和點B(2,3)代入y=-x2+bx+c,解方程組即可解決問題;
(2)作BE⊥OA于E.只要證明△AOC≌△BEA,再推出△ABC是等腰直角三角形,即可解決問題;
(3)過點C作CD∥AB交對稱軸于D,則S△DBC=S△ADC,先求出直線AB的解析式,再求出直線CD的解析式即可解決問題.
解:(1)把A(3,0)和點B(2,3)代入y=-x2+bx+c得到,
,解得,
∴拋物線的表達式為y=-x2+2x+3,
∴對稱軸為x=-=1.
故拋物線的表達式為y=-x2+2x+3,對稱軸為x=1;
(2)如圖,作BE⊥OA于E.
∵A(3,0),B(2,3),tan∠CAO=,
∴OA=3,OE=2,BE=3,∴AE=1,OC=OA×tan∠CAO=1,
∴BE=OA,AE=OC,
∵∠AEB=∠AOC=90°,
∴△AOC≌△BEA(SAS),
∴AC=AB,∠CAO=∠ABE,
∵∠ABE+∠BAE=90°,
∴∠CAO+∠BAE=90°,
∴∠CAB=90°,
∴△ABC是等腰直角三角形,
∴∠ABC=45°,
∴tan∠ABC=1;
(3)如圖,過點C作CD∥AB交對稱軸于D,則S△DBC=S△ADC,
設直線AB的解析式為y=kx+b,將A(3,0),B(2,3)代入得,
,解得,∴直線AB的解析式為y=-3x+9.
∵AB∥CD,設直線CD的解析式為y=-3x+m,將點C(0,-1)代入得,m=-1,
∴直線CD的解析式為y=-3x-1,當x=1時,y=-4,
∴點D的坐標為(1,-4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,是邊上的一點,是的中點,過點作的平行線交的延長線于點,且,連接.
(1)求證:是的中點;
(2)如果,試判斷四邊形的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學小組對函數(shù)y1=圖象和性質進行探究.當x=4時,y1=0.
(1)當x=5時,求y1的值;
(2)在給出的平面直角坐標系中,補全這個函數(shù)的圖象,并寫出這個函數(shù)的一條性質;
(3)進一步探究函數(shù)圖象并解決問題:已知函數(shù)y2=﹣的圖象如圖所示,結合函數(shù)y1的圖象,直接寫出不等式y1≥y2的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用各種盛水容器可以制作精致的家用流水景觀(如圖1).
科學原理:如圖2,始終盛滿水的圓體水桶水面離地面的高度為H(單位:m),如果在離水面豎直距離為h(單校:cm)的地方開大小合適的小孔,那么從小孔射出水的射程(水流落地點離小孔的水平距離)s(單位:cm)與h的關系為s2=4h(H—h).
應用思考:現(xiàn)用高度為20cm的圓柱體望料水瓶做相關研究,水瓶直立地面,通過連注水保證它始終盛滿水,在離水面豎直距高h cm處開一個小孔.
(1)寫出s2與h的關系式;并求出當h為何值時,射程s有最大值,最大射程是多少?
(2)在側面開兩個小孔,這兩個小孔離水面的豎直距離分別為a,b,要使兩孔射出水的射程相同,求a,b之間的關系式;
(3)如果想通過墊高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔離水面的豎直距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在邊AB上求作一點P,使PC=PB,并連接PC;(不寫作法,保留作圖痕跡)
(2)當AC=3,BC=4時,△ACP的周長= ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術、正負術和方程術.這本書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.用現(xiàn)代白話文可以這樣理解:甲口袋中裝有黃金9枚(每枚黃金重量相同),乙口袋中裝有白銀11枚(每枚白銀重量相同),用稱分別稱這兩個口袋的重量,它們的重量相等.若從甲口袋中拿出1枚黃金放入乙口袋中,乙口袋中拿出1枚白銀放入甲口袋中,則甲口袋的重量比乙口袋的重量輕了13兩(袋子重量忽略不計).問一枚黃金和一枚白銀分別重多少兩?請根據題意列方程(組)解之.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網格中,A,M,N均在格點上.在線段上有一動點B,以為直角邊在的右側作等腰直角,使,,G是一個小正方形邊的中點.
(1)當點B的位置滿足時,求此時的長_______;
(2)請用無刻度的直尺,在如圖所示的網格中,畫出一個點C,使其滿足線段最短,并簡要說明點C的位置是如何找到的(不要求證明)____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,直線y=2x+2和直線y=x+2分別交x軸于點A和點B.則下列直線中,與x軸的交點不在線段AB上的直線是( 。
A.y=x+2B.y=x+2C.y=4x+2D.y=x+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在6×4的方格紙ABCD中,請按要求畫格點線段(端點在格點上),且線段的端點均不與點A,B,C,D重合.
(1)在圖1中畫格點線段EF,GH各一條,使點E,F,G,H分別落在邊AB,BC,CD,DA上,且EF=GH,EF不平行GH;
(2)在圖2中畫格點線段MN,PQ各一條,使點M,N,P,Q分別落在邊AB,BC,CD,DA上,且PQ=MN.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com