【題目】我市中小學(xué)全面開展“陽光體育”活動,某校在大課間中開設(shè)了A(體操)、B(乒乓球)、C(毽球)、D(跳繩)四項(xiàng)活動.為了解學(xué)生最喜歡哪一項(xiàng)活動,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖。
請根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)這次被調(diào)查的學(xué)生共有_____人;
(2)請將統(tǒng)計(jì)圖2補(bǔ)充完整;
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對應(yīng)的扇形的圓心角是 _____度;
(4)已知該校共有學(xué)生1000人,根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡體操的學(xué)生有_____人.
【答案】 400 108 100
【解析】分析:(1)根據(jù)C類的人數(shù)除以C類人數(shù)所占的百分比,即可求出總?cè)藬?shù);(2)分別求得A類的人數(shù)和D類的人數(shù),從而補(bǔ)全條形統(tǒng)計(jì)圖即可;(2)利用喜歡B類項(xiàng)目的學(xué)生所占的百分比乘以360°即可得B項(xiàng)目對應(yīng)的扇形的圓心角的度數(shù);(4)用總?cè)藬?shù)乘以喜歡體操的學(xué)生所占的百分比即可得答案.
詳解:
(1)這次被調(diào)查的學(xué)生共有160÷40%=400(人),
故答案為:400;
(2)D項(xiàng)目的人數(shù)為400×20%=80(人),
則A項(xiàng)目的人數(shù)為400-(120+160+80)=40(人),
補(bǔ)全圖形如下:
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對應(yīng)的扇形的圓心角是×360°=108°,
故答案為:108;
(4)根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡體操的學(xué)生有1000×=100(人),
故答案為:100.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)計(jì)算: 9 + ( π 2010 ) 0 2 cos 45 ° .
(2)先化簡,再求值: ,其中a=1﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ;
(2)|5﹣3|表示5與3之差的絕對值,實(shí)際上也可理解為5與3兩數(shù)在數(shù)軸上所對的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動點(diǎn)P從O點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;
(4)動點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長度沿?cái)?shù)軸向右勻速運(yùn)動,Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t(t>0)秒.問當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,E是CD的中點(diǎn),連接AE并延長交BC的延長線于點(diǎn)F,且AB⊥AE.若AB=5,AE=6,則梯形上下底之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)計(jì)了一種促銷活動.在一個(gè)不透明的箱子里放有4個(gè)完全相同的小球,球上分別標(biāo)有“0元”、“10元”、“30元”和“50元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),消費(fèi)每滿300元,就可以從箱子里先后摸出兩個(gè)球(每次只摸出一個(gè)球,第一次摸出后不放回).商場根據(jù)兩個(gè)小球所標(biāo)金額之和返還相應(yīng)價(jià)格的購物券,可以重新在本商場消費(fèi).某顧客消費(fèi)剛好滿300元,則在本次消費(fèi)中:
(1)該顧客至少可得元購物券,至多可得元購物券;
(2)請用畫樹狀圖或列表法,求出該顧客所獲購物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:
(1)以A點(diǎn)為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△AB1C1,畫出△AB1C1.
(2)作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對稱的△A2B2C2.
(3)作出點(diǎn)C關(guān)于x軸的對稱點(diǎn)P.若點(diǎn)P向右平移x(x取整數(shù))個(gè)單位長度后落在△A2B2C2的內(nèi)部,請直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)C、A、D在同一條直線上,∠ABC=∠ADE=α,線段BD、CE交于點(diǎn)M.
(1)如圖1,若AB=AC,AD=AE
①問線段BD與CE有怎樣的數(shù)量關(guān)系?并說明理由;
②求∠BMC的大。ㄓ忙帘硎荆;
(2)如圖2,若AB=BC=kAC,AD=ED=kAE,則線段BD與CE的數(shù)量關(guān)系為 , ∠BMC=(用α表示);
(3)在(2)的條件下,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接EC并延長交BD于點(diǎn)M.則∠BMC=(用α表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象都經(jīng)過點(diǎn)A(﹣2,6)和點(diǎn)(4,n).
(1)求這兩個(gè)函數(shù)的解析式;
(2)直接寫出不等式kx+b≤ 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:有理數(shù)xA用數(shù)軸上點(diǎn)A表示,xA叫做點(diǎn)A在數(shù)軸上的坐標(biāo);有理數(shù)xB用數(shù)軸上點(diǎn)B表示,xB叫做點(diǎn)B在數(shù)軸上的坐標(biāo).|AB|表示數(shù)軸上的兩點(diǎn)A,B之間的距離.
(1)借助數(shù)軸,完成下表:
xA | xB | xA﹣xB | |AB| |
3 | 2 | 1 | 1 |
1 | 5 |
|
|
2 | ﹣3 |
|
|
﹣4 | 1 |
|
|
﹣5 | ﹣2 |
|
|
﹣3 | ﹣6 |
|
|
(2)觀察(1)中的表格內(nèi)容,猜想|AB|= ;(用含xA,xB的式子表示,不用說理)
(3)已知點(diǎn)A在數(shù)軸上的坐標(biāo)是﹣2,且|AB|=8,利用(2)中的結(jié)論求點(diǎn)B在數(shù)軸上的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com