【題目】某天早上,住在同一小區(qū)的小雨、小靜兩人從小區(qū)出發(fā),沿相同的路線步行到學(xué)校上學(xué).小雨出發(fā)5分鐘后,小靜才出發(fā),同時(shí)小雨發(fā)現(xiàn)自己沒帶手表,于是決定按原速回家拿手表小雨拿到手表后,擔(dān)心會(huì)遲到,于是速度提高了20%,結(jié)果比小靜早2分鐘到校.小雨取手表的時(shí)間忽略不計(jì),在整個(gè)過程中,小靜始終保持勻速運(yùn)動(dòng),小雨提速前后也分別保持勻速運(yùn)動(dòng),如圖所示是小雨、小靜之間的距離(米)與小雨離開小區(qū)的時(shí)間(分鐘)之間的函數(shù)圖像,則小區(qū)到學(xué)校的距離是_______米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(1, ),現(xiàn)將等腰直角三角板直角頂點(diǎn)放在原點(diǎn)O,一個(gè)銳角頂點(diǎn)A在此二次函數(shù)的圖象上,而另一個(gè)銳角頂點(diǎn)B在第二象限,且點(diǎn)A的坐標(biāo)為(2,1).
(1)求該二次函數(shù)的表達(dá)式;
(2)判斷點(diǎn)B是否在此二次函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
我們知道方程2x+3y=12有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得y==4-x,(x、y為正整數(shù))
∴則有0<x<6
又y=4-x為正整數(shù),則x為正整數(shù).
從而x=3,代入y=4-×3=2
∴2x+3y=12的正整數(shù)解為.
利用以上方法解決下列問題:
七年級某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。
A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.
(1)當(dāng)a=﹣時(shí),①求h的值;②通過計(jì)算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為m的Q處時(shí),乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=(x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí),y1>y2 其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).
解:∵EF∥AD(已知)
∴∠2=_________( )
∵∠1=∠2(已知)
∴∠1=__________( )
∴DG∥BA ( )
又∵∠BAC=70°(已知)
∴∠AGD=_________°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小章利用一張左、右兩邊已經(jīng)破損的長方形紙片ABCD做折紙游戲,他將紙片沿EF折疊后,D,C兩點(diǎn)分別落在點(diǎn)D′,C′的位置,∠DEF=∠D′EF,并利用量角器量得∠EFB=66°,則∠AED′的度數(shù)為( )
A. 66°B. 132°C. 48°D. 38°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com