閱讀下面短文:如圖1,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補(bǔ)成長(zhǎng)方形,使△ABC的兩個(gè)頂點(diǎn)為長(zhǎng)方形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長(zhǎng)方形這一邊的對(duì)邊上,那么符合要求的長(zhǎng)方形可以畫出兩個(gè):長(zhǎng)方形ACBD和長(zhǎng)方形AEFB(如圖2)。
解答問題:
(1)設(shè)圖2中長(zhǎng)方形ACBD和長(zhǎng)方形AEFB的面積分別為S1,S2,則S1 S2(填“>”、“=”或“<”)
(2)如圖3,△ABC是鈍角三角形,按短文中的要求把它補(bǔ)成長(zhǎng)方形,那么符合要求的長(zhǎng)方形可以畫出 個(gè),利用圖3把它畫出來(lái)。
(3)如圖4,△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文中的要求把它補(bǔ)成長(zhǎng)方形,那么符合要求的長(zhǎng)方形可以畫出 個(gè),利用圖4把它畫出來(lái)。
(4)在(3)中所畫出的長(zhǎng)方形中,哪一個(gè)的周長(zhǎng)最小?為什么?
(1)=;(2)1;(3)3;(4)以AB為邊的長(zhǎng)方形。
【解析】
試題分析:(1)易得原有三角形都等于所畫矩形的一半,那么這兩個(gè)矩形的面積相等.
(2)可仿照?qǐng)D2矩形ABFE的畫法得到矩形.由于∠C非直角,所以只有一種情況.
(3)可讓原銳角三角形的任意一邊為矩形的一邊,另一頂點(diǎn)在矩形的另一邊的對(duì)邊上,可得三種情況.
(4)根據(jù)三個(gè)矩形的面積相等,利用求差法比較三個(gè)矩形的周長(zhǎng)即可.
(1)=;
(2)1;
(3)3;
(4)以AB為邊長(zhǎng)的長(zhǎng)方形周長(zhǎng)最小,
設(shè)長(zhǎng)方形BCED,ACHQ,ABGF的周長(zhǎng)分別為,,,BC=a,AC=b,AB=c.易得三個(gè)長(zhǎng)方形的面積相等,設(shè)為S,
,
,同理可得
∴以AB為邊長(zhǎng)的長(zhǎng)方形周長(zhǎng)最。
考點(diǎn):本題考查的是直角三角形的綜合應(yīng)用
點(diǎn)評(píng):解決此題的關(guān)鍵是注意運(yùn)用類比的方法畫圖;要比較兩個(gè)數(shù)或式子的大小,一般采用求差法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
閱讀下面短文:如圖(1)△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補(bǔ)成矩形,使△ABC的兩個(gè)頂點(diǎn)為矩形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在矩形這一邊的對(duì)上,那么符合要求的矩形可以畫出兩個(gè):矩形ACBD和矩形AEFB[如圖(2)].
解答問題:
(1)設(shè)圖中矩形ACBD和矩形AEFB面積分別是S1,S2,則S1 S2 (填“>”,“=”或“<”)
(2)如圖,△ABC是鈍角三角形,按短文中要求把它補(bǔ)成矩形,那么符合要求的矩形可以畫出 個(gè),利用圖(3)把它畫出來(lái).
(3)如圖(4),△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文要求把它補(bǔ)成矩形,那么符合要求的矩形可以畫出 個(gè),利用圖(4)把它畫出來(lái).
(4)在圖(4)中畫出的矩形中,哪一個(gè)周長(zhǎng)最小?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(05)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2002年陜西省中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com