【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點(diǎn)E,F(xiàn),AE和BF交于點(diǎn)P.如圖,點(diǎn)點(diǎn)同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點(diǎn)C;且∠ACB=60°時(shí),有以下兩個(gè)結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當(dāng)AM∥BN時(shí):
(1)點(diǎn)點(diǎn)發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)求出∠APB的度數(shù),寫(xiě)出AF,BE,AB長(zhǎng)度之間的等量關(guān)系,并給予證明;
(2)設(shè)點(diǎn)Q為線段AE上一點(diǎn),QB=5,若AF+BE=16,四邊形ABEF的面積為,求AQ的長(zhǎng).
【答案】(1)原命題不成立,新結(jié)論為:∠APB=90°,AF+BE=2AB(或AF=BE=AB);(2)當(dāng)∠FAB=60°時(shí),AQ=或.
【解析】
試題分析:(1)由角平分線和平行線整體求出∠MAB+∠NBA,從而得到∠APB=90°,最后用等邊對(duì)等角,即可.
(2)先根據(jù)條件求出AF,F(xiàn)G,求出∠FAG=60°,最后分兩種情況討論計(jì)算.
試題解析:(1)原命題不成立,新結(jié)論為:∠APB=90°,AF+BE=2AB(或AF=BE=AB).
理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分別平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);
(2)如圖1,過(guò)點(diǎn)F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四邊形ABEF是平行四邊形,∵AF+BE=16,∴AB=AF=BE=8,∵=8×FG,∴FG=,在Rt△FAG中,AF=8,∴∠FAG=60°,當(dāng)點(diǎn)G在線段AB上時(shí),∠FAB=60°,當(dāng)點(diǎn)G在線段BA延長(zhǎng)線時(shí),∠FAB=120°.
①如圖2,當(dāng)∠FAB=60°時(shí),∠PAB=30°,∴PB=4,PA=,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=或AQ=.
②如圖3,當(dāng)∠FAB=120°時(shí),∠PAB=60°,∠FBG=30°,∴PB=,∵PB=>5,∴線段AE上不存在符合條件的點(diǎn)Q,∴當(dāng)∠FAB=60°時(shí),AQ=或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:
(1)如果∠1=∠4,根據(jù) , 可得AB∥CD;
(2)如果∠1=∠2,根據(jù) , 可得AB∥CD;
(3)如果∠1+∠3=180,根據(jù) , 可得AB∥CD .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加中學(xué)生籃球運(yùn)動(dòng)會(huì),一支籃球隊(duì)準(zhǔn)備購(gòu)買(mǎi)10雙運(yùn)動(dòng)鞋,各種尺碼統(tǒng)計(jì)如下表:
尺碼(厘米) | 40 | 40.5 | 41 | 41.5 | 42 |
購(gòu)買(mǎi)量(雙) | 1 | 2 | 3 | 2 | 2 |
則這10雙運(yùn)動(dòng)鞋尺碼的眾數(shù)和中位數(shù)分別為( )
A. 40.5;41 B. 41;41 C. 40.5;40.5 D. 41;40.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知O是∠APB內(nèi)的一點(diǎn),點(diǎn)M、N分別是O點(diǎn)關(guān)于PA、PB的對(duì)稱(chēng)點(diǎn),MN與PA、PB分別相交于點(diǎn)E、F,已知MN=5cm,求△OEF的周長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線l1和直線l2平行,且l1和l2間的距離為a.如果線段AB在l1的右側(cè),并設(shè)AB關(guān)于l1的對(duì)稱(chēng)圖形是A′B′,而A′B′關(guān)于l2的對(duì)稱(chēng)圖形是A″B″(如圖),那么,線段AB和A″B″有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣1,y1),點(diǎn)B(2,y2)在拋物線y=﹣3x2+2上,則y1,y2的大小關(guān)系是( 。
A.y1>y2B.y1<y2C.y1=y2D.無(wú)法判斷
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上距離原點(diǎn)上的距離是2個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是( )
A.2
B.2或-2
C.-2
D.不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com