一次函數(shù)y=x–3的圖象與軸,軸分別交于點.一個二次函數(shù)y=x2+bx+c的圖象經(jīng)過點.
(1)求點的坐標,并畫出一次函數(shù)y=x–3的圖象;
(2)求二次函數(shù)的解析式并求其圖像頂點C的坐標.
(3)求的面積。
(1)點A的坐標是(3,0),點B的坐標是(0,﹣3);
(2)二次函數(shù)的解析式是y=x2﹣2x﹣3,頂點C的坐標是(1,4);
(3)△ABC的面積是3.
解析試題分析:(1)分別把x=0、y=0代入求出y、x的值即可;
(2)把A、B的坐標代入二次函數(shù)的解析式得到方程組求出方程組的解即可,過A、B作直線即可;
(3)過C作CD⊥y軸于D,根據(jù)S△ABC=S梯形AODC﹣S△AOB﹣S△BDC,和數(shù)據(jù)線和梯形的面積公式求出即可.
試題解析:(1)y=x﹣3,當x=0時,y=﹣3,當y=0時,x=3,
∴A(3,0),B(0,﹣3).
直線y=k﹣3的圖象如圖所示:
答:點A的坐標是(3,0),點B的坐標是(0,﹣3);
(2)把A(3,0),B(0,﹣3)代入次函數(shù)y=x2+bx+c得:,
解得:,
∴y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴C的坐標是(1,﹣4),
答:二次函數(shù)的解析式是y=x2﹣2x﹣3,頂點C的坐標是(1,4);
(3)過C作CD⊥y軸于D,如圖:
∵A(3,0),B(0,﹣3)C(1,﹣4),
∴OA=3,OB=3,CD=1,OD=4,BD=4﹣3=1,
∴S△ABC=S梯形AODC﹣S△AOB﹣S△BDC,
=×(CD+OA)×OD﹣×OA×OB﹣×DB×CD,
=×(1+3)×4﹣×3×3﹣×1×1=3,
答:△ABC的面積是3.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:填空題
如圖,拋物線與y軸相交于點A,與過點A平行于x軸的直線相交于點B(點B在第一象限).拋物線的頂點C在直線OB上,對稱軸與x軸相交于點D.平移拋物線,使其經(jīng)過點A、D,則平移后的拋物線的解析式為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線y=ax2+bx﹣4與x軸交于A(﹣2,0),B(8,0)兩點,與y軸交于點C,連接BC,以BC為一邊,作菱形BDEC,使其對角線在坐標軸上,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線l交拋物線于點Q.
(1)求拋物線的解析式;
(2)將拋物線向上平移n個單位,使其頂點在菱形BDEC內(nèi)(不含菱形的邊),求n的取值范圍;
(3)當點P在線段OB上運動時,直線l交BD于點M.試探究m為何值時,四邊形CQMD是平行四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在直角坐標平面內(nèi),直線與軸和軸分別交于A、B兩點,二次函數(shù)的圖象經(jīng)過點A、B,且頂點為C.
(1)求這個二次函數(shù)的解析式;
(2)求的值;
(3)若P是這個二次函數(shù)圖象上位于軸下方的一點,且ABP的面積為10,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,二次函數(shù)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點A,B(點A位于點B的左側(cè)),與y軸交于點C(0,-3),點D在二次函數(shù)的圖象上,CD∥AB,連接AD.過點A作射線AE交二次函數(shù)的圖象于點E,AB平分∠DAE.
(1)用含m的代數(shù)式表示a;
(2))求證:為定值;
(3)設該二次函數(shù)圖象的頂點為F.探索:在x軸的負半軸上是否存在點G,連接CF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點G即可,并用含m的代數(shù)式表示該點的橫坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線:y=ax2+bx+4與x軸交于點A(-2,0)和B(4,0)、與y軸交于點C.
(1)求拋物線的解析式;
(2)T是拋物線對稱軸上的一點,且△ACT是以AC為底的等腰三角形,求點T的坐標;
(3)點M、Q分別從點A、B以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行.當點M原點時,點Q立刻掉頭并以每秒個單位長度的速度向點B方向移動,當點M到達拋物線的對稱軸時,兩點停止運動.過點M的直線l⊥軸,交AC或BC于點P.求點M的運動時間t(秒)與△APQ的面積S的函數(shù)關系式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
為深化“攜手節(jié)能低碳,共建碧水藍天”活動,發(fā)展“低碳經(jīng)濟”,某單位進行技術革新,讓可再生資源重新利用.今年1月份,再生資源處理量為40噸,從今年1月1日起,該單位每月再生資源處理量每一個月將提高10噸.月處理成本(元)與月份之間的關系可近似地表示為:,每處理一噸再生資源得到的新產(chǎn)品的售價定為100元.若該單位每月再生資源處理量為y(噸),每月的利潤為w(元).
(1)分別求出y與x,w與x的函數(shù)關系式;
(2)在今年內(nèi)該單位哪個月獲得利潤達到5800元?
(3)隨著人們環(huán)保意識的增加,該單位需求的可再生資源數(shù)量受限.今年三月的再生資源處理量比二月份減少了m%,該新產(chǎn)品的產(chǎn)量也隨之減少,其售價比二月份的售價增加了%.四月份,該單位得到國家科委的技術支持,使月處理成本比二月份的降低了%.如果該單位四月份在保持三月份的再生資源處理量和新產(chǎn)品售價的基礎上,其利潤比二月份的利潤減少了60元,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉(zhuǎn),當點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉(zhuǎn),當點F落在正方形上時,記為點H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為 ,求此時線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為 ,此時AE與BF的數(shù)量關系是 ;
②以①中的結(jié)論為前提,設AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某賓館有30個房間供游客住宿,當每個房間的房價為每天120元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于210元.設每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關系式及自變量x的取值范圍;
(2)設賓館一天的利潤為w元,求w與x的函數(shù)關系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com