如果3x+2=7,那么9x+1等于


  1. A.
    16
  2. B.
    22
  3. C.
    28
  4. D.
    無法確定
A
分析:由已知等式求出3x的值,將所求式子變形后代入計算,即可求出值.
解答:∵3x+2=7,即3x=5,
∴9x+1=3×5+1=16.
故選A.
點評:此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列解方程組的方法,然后解答問題:
解方程組
14x+15y=16①
17x+18y=19②
時,由于x、y的系數(shù)及常數(shù)項的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來解,那將是計算量大,且易出現(xiàn)運算錯誤,而采用下面的解法則比較簡單:
②-①得:3x+3y=3,所以x+y=1③
③×14得:14x+14y=14④
①-④得:y=2,從而得x=-1
所以原方程組的解是
x=-1①
y=2②

(1)請你運用上述方法解方程組
2005x+2006y=2007
2008x+2009y=2010

(2)請你直接寫出方程組
1993x+1994y=1995
2007x+2008y=2009
的解是
 
;
(3)猜測關(guān)于x、y的方程組
mx+(m+1)y=m+2
nx+(n+1)y=n+2
(m≠n)的解是什么?并用方程組的解加以驗證.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解答題
①當m取何值時,關(guān)于x的方程:3x-2=4與5x-1=-m的解相等?
②一堆小麥用8個編織袋來裝,以每袋55千克為標準,超過的記作為正數(shù),不足的記作為負數(shù),現(xiàn)記錄如下:(單位:千克)
+2,-3,+2,+1,-2,-1,0,-2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價為1.2元,則這堆小麥可賣多少錢?
③探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問題:精英家教網(wǎng)
(1)請猜想1+3+5+7+9+…+19=
 
;
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
 

(3)請用上述規(guī)律計算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個正方形任意圈出二行二列四個數(shù),
精英家教網(wǎng)精英家教網(wǎng)
若在第二行第二列的那個數(shù)表示為a,其余各數(shù)分別為b,c,d.
精英家教網(wǎng)
(1)分別用含a的代數(shù)式表示b,c,d這三個數(shù).
(2)求這四個數(shù)的和(用含a的代數(shù)式表示,要求合并同類項化簡)
(3)這四個數(shù)的和會等于51嗎?如果會,請算出此時a的值,如果不會,說明理由.(要求列方程解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

解答題
①當m取何值時,關(guān)于x的方程:3x-2=4與5x-1=-m的解相等?
②一堆小麥用8個編織袋來裝,以每袋55千克為標準,超過的記作為正數(shù),不足的記作為負數(shù),現(xiàn)記錄如下:(單位:千克)
+2,-3,+2,+1,-2,-1,0,-2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價為1.2元,則這堆小麥可賣多少錢?
③探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問題:
(1)請猜想1+3+5+7+9+…+19=______;
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n+1)=______;
(3)請用上述規(guī)律計算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個正方形任意圈出二行二列四個數(shù),

若在第二行第二列的那個數(shù)表示為a,其余各數(shù)分別為b,c,d.

(1)分別用含a的代數(shù)式表示b,c,d這三個數(shù).
(2)求這四個數(shù)的和(用含a的代數(shù)式表示,要求合并同類項化簡)
(3)這四個數(shù)的和會等于51嗎?如果會,請算出此時a的值,如果不會,說明理由.(要求列方程解答)

查看答案和解析>>

科目:初中數(shù)學 來源:期中題 題型:解答題

①當m取何值時,關(guān)于x的方程:3x﹣2=4與5x﹣1=﹣m的解相等?
②一堆小麥用8個編織袋來裝,以每袋55千克為標準,超過的記作為正數(shù),不足的記作為負數(shù),現(xiàn)記錄如下:(單位:千克)+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價為1.2元,則這堆小麥可賣多少錢?
③探索規(guī)律:觀察下面由組成的圖案和算式,解答問題:
(1)請猜想1+3+5+7+9+…+19=       ;
(2)請猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)=               ;
(3)請用上述規(guī)律計算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個正方形任意圈出二行二列四個數(shù),

若在第二行第二列的那個數(shù)表示為a,其余各數(shù)分別為b,c,d.

(1)分別用含a的代數(shù)式表示b,c,d這三個數(shù).
(2)求這四個數(shù)的和(用含a的代數(shù)式表示,要求合并同類項化簡)
(3)這四個數(shù)的和會等于51嗎?如果會,請算出此時a的值,如果不會,說明理由.(要求列方程解答)

查看答案和解析>>

科目:初中數(shù)學 來源:山東省期末題 題型:解答題

閱讀下列解方程組的方法,然后解答問題:
解方程組時,由于x、y的系數(shù)及常數(shù)項的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來解,那將是計算量大,且易出現(xiàn)運算錯誤,而采用下面的解法則比較簡單:
②﹣①得:3x+3y=3,所以x+y=1③
③×14得:14x+14y=14④
①﹣④得:y=2,從而得x=﹣1
所以原方程組的解是 .
(1)請你運用上述方法解方程組;
(2)請你直接寫出方程組的解是__________;
(3)猜測關(guān)于x、y的方程組(m≠n)的解是什么?并用方程組的解加以驗證.

查看答案和解析>>

同步練習冊答案