【題目】如圖,等腰梯形ABCD中,AD∥BC,AE∥DC,∠B=60°,BC=3,△ABE的周長為6,則等腰梯形的周長是( )
A.8
B.10
C.12
D.16
【答案】A
【解析】∵AD∥BC,AE∥DC
∴四邊形ADCE為平行四邊形
∴EC=AD,AE=CD
∵AB=CD
∴AB=AE
∵△ABE的周長為6
∴BE=2
∵BC=3
∴EC=1
∴等腰梯形的周長=AB+BC+CD+AD=2+3+2+1=8
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的平行四邊形的判定與性質(zhì)和等腰梯形的性質(zhì),需要了解若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對角線相等才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.
(1)化簡:2B﹣A;
(2)已知﹣a|x﹣2|b2與aby的同類項(xiàng),求2B﹣A的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A. (ab3)2=a2b6 B. a2·a3=a6 C. (a+b)(a-2b)=a2-2b2 D. 5a-2a=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A在y軸左側(cè),在x軸的上側(cè),距離每個(gè)坐標(biāo)軸都是4個(gè)單位長度,則點(diǎn)A的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC, ∠B=70°∠C=40°,DE//AB交BC于點(diǎn)E.若AD=3,BC=10,則CD的長是( )
A.7
B.10
C.13
D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在4×4的正方形(每個(gè)小正方形的邊長均為1)網(wǎng)格中,以A為頂點(diǎn),其他三個(gè)頂點(diǎn)都在格點(diǎn)(網(wǎng)格的交點(diǎn))上,且面積為2的平行四邊形的共有( 。﹤(gè).
A.10
B.12
C.14
D.23
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com