【題目】如圖,點(diǎn)A為線(xiàn)段BC外一動(dòng)點(diǎn),且BC4,AB3,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE

1)請(qǐng)找出圖中與BE相等的線(xiàn)段,并說(shuō)明理由;

2)當(dāng)∠ABC30°時(shí),求線(xiàn)段BE長(zhǎng);

3)直接寫(xiě)出線(xiàn)段BE長(zhǎng)的最大值.

【答案】1BECD,理由見(jiàn)解析;(25;(37

【解析】

1BECD,根據(jù)等邊三角形的性質(zhì)證明ABE≌△ADC,可以得出;

2)如圖1,利用勾股定理求出DC5,再利用(1)中CDBE,得出結(jié)論;

3)線(xiàn)段BE長(zhǎng)的最大值就是線(xiàn)段CD的最大值,當(dāng)DB、C在同一直線(xiàn)上時(shí),DC最大為7,由此得出結(jié)論:BE的最大值為也是7

解:(1BECD,理由是:

∵△ABDACE都是等邊三角形,

ADAB,AEAC,DABCAE60°

∴∠DAB+∠BACCAE+∠BAC,

DACBAE

∴△ABE≌△ADCSAS),

CDBE;

2)如圖1

∵∠ABC30°,ABD60°,

∴∠DBCABD+∠ABC60°+30°90°,

∵△ABD是等邊三角形,

BDAB3,

Rt△DBC中,BC4

DC5,

BEDC5;

3)在BDC中,DCBC+BD,

DC3+47,

當(dāng)DB、C在同一直線(xiàn)上時(shí),DC最大為7,

BEDC,

BE的最大值為也是7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句;①若,則互為鄰補(bǔ)角;②的角和的角都是補(bǔ)角;③連結(jié)AB,并延長(zhǎng)到點(diǎn)C;④同角的余角相等.其中真命題有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人以各自的交通工具、相同路線(xiàn),前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l、l分別表示甲、乙前往目的地所走的路程Skm)隨時(shí)間t(分)變化的函數(shù)圖象.以下說(shuō)法:①乙比甲提前12分鐘到達(dá);②乙走了8km后遇到甲;③乙出發(fā)6分鐘后追上甲;④甲走了28分鐘時(shí),甲乙相距3km.其中正確的是(  )

A. 只有① B. ①③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l1:y=kx+b 經(jīng)過(guò)點(diǎn)A(﹣,0)和點(diǎn)B(2,5)

(1)求直線(xiàn)l1y軸的交點(diǎn)坐標(biāo);

(2)若點(diǎn)C(a,a+2)與點(diǎn)D在直線(xiàn)l1上,過(guò)點(diǎn)D的直線(xiàn)l2x軸正半軸交于點(diǎn) E,當(dāng)AC=CD=CE 時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)EAD的中點(diǎn),連接BE,BF平分∠EBCCD于點(diǎn)F,交AC于點(diǎn)G,將CGF沿直線(xiàn)GF折疊至C′GF,BDC′GF相交于點(diǎn)M、N,連接CN,若AB=6,則四邊形CNC′G的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=CDA=90°,BEAD于點(diǎn)E,且四邊形ABCD的面積為144,則BE________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABO中,斜邊AB=1,若OCBA,AOC=36°,則(  )

A. 點(diǎn)BAO的距離為sin54°

B. 點(diǎn)AOC的距離為sin36°sin54°

C. 點(diǎn)BAO的距離為tan36°

D. 點(diǎn)AOC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.

(1)請(qǐng)直接寫(xiě)出二次函數(shù)y=ax2+x+c的表達(dá)式;

(2)判斷ABC的形狀,并說(shuō)明理由;

(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫(xiě)出此時(shí)點(diǎn)N的坐標(biāo);

(4)如圖2,若點(diǎn)N在線(xiàn)段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過(guò)點(diǎn)N作NMAC,交AB于點(diǎn)M,當(dāng)AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,動(dòng)點(diǎn)P在∠ABC的平分線(xiàn)BD上,動(dòng)點(diǎn)M在BC邊上,若BC=3,∠ABC=45°,則PM+PC的最小值是( )

A. 2 B. C. D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案