【題目】對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù)。例如:M{1,0,2}= ;min{1,0,2}=1;min{1,0,a}= .如果M{2,x+1,2x}=min{2,x+1,2x},則x的值是( )

A.B.C.1D.

【答案】C

【解析】

根據(jù)M{ab,c}表示這三個數(shù)的平均數(shù),先求出M{2,x+1,2x}的值,然后根據(jù)M{2,x+1,2x}=min{2,x+1,2x},即可求出x的取值范圍.

M{a,b,c}表示這三個數(shù)的平均數(shù),

,

min{a,b,c}表示這三個數(shù)中最小的數(shù),M{2,x+1,2x}=min{2,x+1,2x},

,

,

x=1.

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧的惠農富農,老張在科技人員的指導下,改良柑橘品種,去年他家的柑橘喜獲豐收,而且質優(yōu)味美,客商聞訊前來采購,經(jīng)協(xié)商:采購價y(元/噸)與采購量x(噸)之間的函數(shù)關系如圖所示.

(1)求yx之間的函數(shù)關系式;

(2)老張種植柑橘的成本是800元/噸,當客商采購量是多少時,老張在這次銷售柑橘時獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BAC=45°,BC=2,D是線段BC上的一個動點,點D是關于直線AB、AC的對稱點分別為M、N,則線段MN長的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.

(1)求證:BD=EC;

(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通過計算我們知道:

a-1)(a+1=a2-1

a-1)(a2+a+1=a3-1

a-1)(a3+a2+a+1=a4-1

1)請根據(jù)以上計算規(guī)律填空:(a-1)(an+an-1+…+a3+a2+a+1=______

2)根據(jù)上述規(guī)律,請你求出32018+32017+…+33+32+3+1的個位上的數(shù)字.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店計劃購進,兩種型號的電機,其中每臺型電機的進價比型多元,且用元購進型電機的數(shù)量與用元購進型電機的數(shù)量相等.

1)求,兩種型號電機的進價;

2)該商店打算用不超過元的資金購進兩種型號的電機共臺,至少需要購進多少臺型電機?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,把二元一次方程的若干個解用點表示出來,發(fā)現(xiàn)它們都落在同一條直線上.一般地,任何一個二元一次方程的所有解用點表示出來,它的圖象就是一條直線.根據(jù)這個結論,解決下列問題:

1)根據(jù)圖象判斷二元一次方程的正整數(shù)解為 ;(寫出所有正整數(shù)解)

2)若在直線上取一點(,),先向下平移個單位長度,再向右平移個單位長度得到點M′,發(fā)現(xiàn)點M′又重新落在二元一次方程的圖象上,試探究,之間滿足的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由.

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結論

當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過點E作EFBC,交AC于點F.

(請你完成以下解答過程)

(3)拓展結論,設計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=mx+n的圖像與x軸交于點B,與反比例函數(shù)(k0)的圖像交于點C,過點CCHx軸,點D是反比例函數(shù)圖像上的一點,直線CDx軸交于點A,若HCB=∠HCA,且BC=10,BA=16

1)若OA=11,求k的值;

2)沿著x軸向右平移直線BC,若直線經(jīng)過H點時恰好又經(jīng)過點D,求一次函數(shù)函數(shù)y=mx+n的表達式.

查看答案和解析>>

同步練習冊答案