(1999•西安)如圖,請觀察正六邊形,下列結(jié)論正確的是( )

A.是中心對稱圖形,又是軸對稱圖形,有3條對稱軸
B.不是中心對稱圖形,是軸對稱圖形,有3條對稱軸
C.是中心對稱圖形,又是軸對稱圖形,有6條對稱軸
D.不是中心對稱圖形,是軸對稱圖形,有6條對稱軸
【答案】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.
解答:解:在同一平面內(nèi),把這個圖形繞某一點旋轉(zhuǎn)180度,旋轉(zhuǎn)后的圖形能和原圖形完全重合,這個圖形就是中心對稱圖形,一個圖形沿著一條直線對折后兩部分完全重合,這就是軸對稱圖形.該圖形沿著它本身相對的三組頂點有三條對稱軸,三組對應變的中點的三條直線也是它的對稱軸,故有6條,該圖形既是中心對稱圖形又是軸對稱圖形,因為是正六邊形,所以有6條對稱軸.
故選C.
點評:此題考查的是中心對稱圖形與軸對稱圖形的概念.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以OC為直徑作⊙D,設⊙D的半徑為2.
(1)求⊙C的圓心坐標;
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以OC為直徑作⊙D,設⊙D的半徑為2.
(1)求⊙C的圓心坐標;
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以OC為直徑作⊙D,設⊙D的半徑為2.
(1)求⊙C的圓心坐標;
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以OC為直徑作⊙D,設⊙D的半徑為2.
(1)求⊙C的圓心坐標;
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年陜西省西安市中考數(shù)學試卷(解析版) 題型:解答題

(1999•西安)如圖,在直角坐標系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以OC為直徑作⊙D,設⊙D的半徑為2.
(1)求⊙C的圓心坐標;
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.

查看答案和解析>>

同步練習冊答案