【題目】如本題圖①,在△ABC中,已知∠ABC=∠ACB=α.過(guò)點(diǎn)A作BC的平行線與∠ABC的平分線交于點(diǎn)D,連接CD.

(1)求∠ACD的大小;

(2)在線段CD的延長(zhǎng)線上取一點(diǎn)F,以FD為角的一邊作∠DFE=α,另一邊交BD延長(zhǎng)線于點(diǎn)E,若FD=kAD(如本題圖②所示),試求的值(用含k的代數(shù)式表示).

【答案】(1)∠ACD=90°﹣;(2)=k2.

【解析】試題分析:(1)由∠ABC=∠ACB,BD平分∠ABC,得到∠1=∠2=,AB=AC,因?yàn)锳D∥BC,推出∠2=∠3,得到∠3=∠1=,得到AB=AD.AC=AD=AB.于是得到∠ACD=∠ADC=,根據(jù)AD∥BC,∠CAD=ACB=α,得出結(jié)論∠ACD=∠ADC==90°﹣

(2)過(guò)A作AH⊥BC于點(diǎn)H,得到∠AHB=90°.證出∠BAH=90°﹣α,因?yàn)锳D∥BC,得出∠BDC+∠ADC=180°,然后證得對(duì)應(yīng)角相等,得到相似三角形,根據(jù)相似三角形的性質(zhì)得比例式求得結(jié)果.

試題解析:(1)∵∠ABC=∠ACB,BD平分∠ABC,∴∠1=∠2=,AB=AC,

∵AD∥BC,∴∠2=∠3,∴∠3=∠1=,∴AB=AD.

∴AC=AD=AB.∴∠ACD=∠ADC=,

又∵AD∥BC,∴∠CAD=ACB=α,

∴∠ACD=∠ADC==90°﹣;

(2)過(guò)A作AH⊥BC于點(diǎn)H,則∠AHB=90°.

∴∠BAH=90°﹣α,

∵AD∥BC,∴∠BDC+∠ADC=180°,即:∠BCA+∠ACD+∠CDB+∠3=180°,

由∠ACB=α,∠ACD=90°﹣,∠3=,

得:∠CDB=180°﹣α﹣(90°﹣)﹣=90°﹣α.

∴∠FDE=∠CDB=90°﹣α,∴∠BAH=∠FDE,∵∠ABH=∠DFE=α,

∴△ABH∽△DEF,

∵FD=kAD,AB=AD,∴S△DEF=k2S△BAH,

∵AD∥BC,∴S△BCD=S△ABC=2S△BAH,∴=k2,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“正數(shù)的平方根的和為零”,寫成“如果……,那么……”是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將多項(xiàng)式x﹣x3因式分解正確的是( 。

A. x(x2﹣1) B. x(1﹣x2 C. x(x+1)(x﹣1) D. x(1+x)(1﹣x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把多項(xiàng)式x2+ax+b分解因式,得(x+1)(x﹣3)a,b的值分別是a=_____,b=_____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x2+kxy+64y2是一個(gè)完全式,則k的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次測(cè)驗(yàn)中,某學(xué)習(xí)小組5名學(xué)生成績(jī)?nèi)缦拢▎挝唬悍郑?/span>:68 、75、67、66、99.這組成績(jī)的平均分=____________中位數(shù)M= ___________;若去掉一個(gè)最高分后的平均分=_____________;那么所求的,M,這三個(gè)數(shù)據(jù)中,你認(rèn)為能描述該小組學(xué)生這次測(cè)驗(yàn)成績(jī)的一般水平的數(shù)據(jù)是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是假命題的為( 。

A. 在同一平面內(nèi),不重合的兩條直線不相交就平行B. a2b2,則ab

C. xy,則|x||y|D. 同角的補(bǔ)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】適合下列條件的△ABC中,直角三角形的個(gè)數(shù)為(

①a=,b=,c= ②a=6,∠A=45°; ③∠A=32°,∠B=58°;

④a=7,b=24,c=25 ⑤a=2,b=2,c=4.

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣x2+x+4x軸于點(diǎn)A、B,交y軸于點(diǎn)C,連接AC、BC

1)求交點(diǎn)AB的坐標(biāo)以及直線BC的解析式;

2)如圖1,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)以每秒5個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),過(guò)點(diǎn)Py軸的平行線交線段BC于點(diǎn)M,交拋物線于點(diǎn)N,過(guò)點(diǎn)NNC⊥BCBC于點(diǎn)K,當(dāng)△MNK△MPB的面積比為12時(shí),求動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間t的值;

3)如圖2,動(dòng)點(diǎn)P 從點(diǎn)B出發(fā)以每秒5個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)沿AC以相同速度向終點(diǎn)C運(yùn)動(dòng),且P、Q同時(shí)停止,分別以PQ、BP為邊在x軸上方作正方形PQEF和正方形BPGH(正方形頂點(diǎn)按順時(shí)針順序),當(dāng)正方形PQEF和正方形BPGH重疊部分是一個(gè)軸對(duì)稱圖形時(shí),請(qǐng)求出此時(shí)軸對(duì)稱圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案