【題目】觀察以下等式:
第1個(gè)等式:++×=1,
第2個(gè)等式:++×=1,
第3個(gè)等式:++×=1,
第4個(gè)等式:++×=1,
第5個(gè)等式:++×=1,
……
按照以上規(guī)律,解決下列問題:
(1)寫出第6個(gè)等式:_____;
(2)寫出你猜想的第n個(gè)等式:_____(用含n的等式表示),并證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(7,0),C(0,4),點(diǎn)D的坐標(biāo)為(5,0),點(diǎn)P在BC邊上運(yùn)動(dòng). 當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),直線y= x+4的圖象與該二次函數(shù)的圖象交于點(diǎn)A(m,8),直線與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.
(1)求這個(gè)二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
(2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A,B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象的交于點(diǎn)D,與x軸交于點(diǎn)E,設(shè)線段PD長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點(diǎn)P.使得以點(diǎn)P,E,B為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形中,,直線過點(diǎn).
(1)當(dāng)時(shí),如圖1,分別過點(diǎn)和作直線于點(diǎn),直線于點(diǎn).與是否全等,并說明理由;
(2)當(dāng),時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接、.點(diǎn)是上一點(diǎn),點(diǎn)是上一點(diǎn),分別過點(diǎn)、作直線于點(diǎn),直線于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為.點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為.點(diǎn)、同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
①當(dāng)為等腰直角三角形時(shí),求的值;
②當(dāng)與全等時(shí),求的值.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)E、M在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本的作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請(qǐng)畫示意圖說明剪法.
我們有多少種剪法,圖1是其中的一種方法:定義:如果兩條線段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.
請(qǐng)你在圖2中用三種不同的方法畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對(duì)全等三角形,則視為同一種)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于點(diǎn)E,∠E=30°,交AB于點(diǎn)D,連接AE,則SADC:S△ADE的比值為( )
A.
B.
C.
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,學(xué)校準(zhǔn)備在如圖所示的矩形ABCD空地上進(jìn)行綠化,規(guī)劃在中間的一塊四邊形MNQP上種花,其余的四塊三角形上鋪設(shè)草坪,要求AM=AN=CP=CQ,已知BC=24米,AB=40米,設(shè)AN=x米,種花的面積為y1平方米,草坪面積y2平方米.
(1)分別求y1和y2與x之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)當(dāng)AN的長(zhǎng)為多少米時(shí),種花的面積為440平方米?
(3)若種花每平方米需200元,鋪設(shè)草坪每平方米需100元,現(xiàn)設(shè)計(jì)要求種花的面積不大于440平方米,設(shè)學(xué)校所需費(fèi)用W(元),求W與x之間的函數(shù)關(guān)系式,并求出學(xué)校所需費(fèi)用的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com